リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inventory of ATP-binding cassette proteins in Lithospermum erythrorhizon as a model plant producing divergent secondary metabolites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inventory of ATP-binding cassette proteins in Lithospermum erythrorhizon as a model plant producing divergent secondary metabolites

Li, Hao Matsuda, Hinako Tsuboyama, Ai Munakata, Ryosuke Sugiyama, Akifumi Yazaki, Kazufumi 京都大学 DOI:10.1093/dnares/dsac016

2022.06

概要

ATP-binding cassette (ABC) proteins are the largest membrane transporter family in plants. In addition to transporting organic substances, these proteins function as ion channels and molecular switches. The development of multiple genes encoding ABC proteins has been associated with their various biological roles. Plants utilize many secondary metabolites to adapt to environmental stresses and to communicate with other organisms, with many ABC proteins thought to be involved in metabolite transport. Lithospermum erythrorhizon is regarded as a model plant for studying secondary metabolism, as cells in culture yielded high concentrations of meroterpenes and phenylpropanoids. Analysis of the genome and transcriptomes of L. erythrorhizon showed expression of genes encoding 118 ABC proteins, similar to other plant species. The number of expressed proteins in the half-size ABCA and full-size ABCB subfamilies was ca. 50% lower in L. erythrorhizon than in Arabidopsis, whereas there was no significant difference in the numbers of other expressed ABC proteins. Because many ABCG proteins are involved in the export of organic substances, members of this subfamily may play important roles in the transport of secondary metabolites that are secreted into apoplasts.

この論文で使われている画像

参考文献

1. Verrier, P.J., Bird, D., Burla, B., et al. 2008, Plant ABC proteins—a unified nomenclature and updated inventory, Trends Plant Sci., 13, 151–9.

2. Kang, J., Park, J., Choi, H., et al. 2011, Plant ABC transporters, Arabidopsis Book, 9, e0153.

3. Dudler, R. and Hertig, C. 1992, Structure of an mdr-like gene from Arabidopsis thaliana. Evolutionary implications, J. Biol. Chem., 267, 5882–8.

4. Sugiyama, A., Shitan, N., Sato, S., Nakamura, Y., Tabata, S. and Yazaki, K. 2006, Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family, DNA Res., 13, 205–28.

5. Do, T.H.T., Martinoia, E., Lee, Y. and Hwang, J.-U. 2021, 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants, Plant Physiol., 187, 1876–92.

6. Banasiak, J. and Jasinski, M. 2022, ATP-binding cassette (ABC) trans- porters in nonmodel plants, New Phytol., 233, 1597–612.

7. Bovet, L., Feller, U. and Martinoia, E. 2005, Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach, Environ. Int., 31, 263–7.

8. Brunetti, P., Zanella, L., De Paolis, A., et al. 2015, Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis, J. Exp. Bot., 66, 3815–29.

9. Yazaki, K. 2005, Transporters of secondary metabolites, Curr. Opin. Plant Biol., 8, 301–7.

10. Yazaki, K. 2006, ABC transporters involved in the transport of plant secondary metabolites, FEBS Lett., 580, 1183–91.

11. Lefe`vre, F. and Boutry, M. 2018, Towards identification of the substrates of ATP-binding cassette transporters, Plant Physiol., 178, 18–39.

12. Yazaki, K., Matsuoka, H., Ujihara, T. and Sato, F. 1999, Shikonin biosynthesis in Lithospermum erythrorhizon, Plant Biotechnol., 16, 335–42.

13. Yazaki, K. 2017, Lithospermum erythrorhizon cell cultures: present and future aspects, Plant Biotechnol. (Tokyo), 34, 131–42.

14. Yamamoto, H., Yazaki, K. and Inoue, K. 2000, Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography, J. Chromatogr. B Biomed. Sci. Appl., 738, 3–15.

15. Yamamoto, H., Inoue, K. and Yazaki, K. 2000, Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures, Phytochemistry, 53, 651–7.

16. Yazaki, K., Fukui, H. and Tabata, M. 1986, Accumulation of p-O-b-D-glucosylbenzoic acid and its relation to shikonin biosynthesis in Lithospermum cell cultures, Phytochemistry, 25, 1629–32.

17. Yazaki, K., Inushima, K., Kataoka, M. and Tabata, M. 1995, Intracellular localization of UDPG: p-Hydroxybenzoate glucosyltransferase and its reaction product in Lithospermum cell cultures, Phytochemistry, 38, 1127–30.

18. Tatsumi, K., Yano, M., Kaminade, K., et al. 2016, Characterization of shikonin derivative secretion in Lithospermum erythrorhizon hairy roots as a model of lipid-soluble metabolite secretion from plants, Front. Plant Sci., 7, 1066.

19. Yamamoto, H., Inoue, K., Li, S.M. and Heide, L. 2000, Geranylhydroquinone 300-hydroxylase, a cytochrome P-450 monooxygenase from Lithospermum erythrorhizon cell suspension cultures, Planta, 210, 312–7.

20. Wang, S., Wang, R., Liu, T., et al. 2019, CYP76B74 catalyzes the 300-hydroxylation of geranylhydroquinone in shikonin biosynthesis, Plant Physiol., 179, 402–14.

21. Song, W., Zhuang, Y. and Liu, T. 2020, Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during shikonin biosynthesis, Phytochemistry, 175, 112375.

22. Oshikiri, H., Watanabe, B., Yamamoto, H., Yazaki, K. and Takanashi, K. 2020, Two BAHD acyltransferases catalyze the last step in the shikonin/alkannin biosynthetic pathway, Plant Physiol., 184, 753–61.

23. Song, W., Zhuang, Y. and Liu, T. 2021, CYP82AR Subfamily proteins catalyze C-10 hydroxylations of deoxyshikonin in the biosynthesis of shikonin and alkannin, Org. Lett., 23, 2455–9.

24. Auber, R.P., Suttiyut, T., McCoy, R.M., et al. 2020, Hybrid de novo genome assembly of red gromwell (Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis, Hortic. Res., 7, 82.

25. Manni, M., Berkeley, M.R., Seppey, M., Sim~ao, F.A. and Zdobnov, E.M. 2021, BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes, Mol. Biol. Evol., 38, 4647–54.

26. Jackman, S.D., Vandervalk, B.P., Mohamadi, H., et al. 2017, ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter, Genome Res., 27, 768–77.

27. Ye, C., Hill, C.M., Wu, S., Ruan, J. and Ma, Z.S. 2016, DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies, Sci. Rep., 6, 31900.

28. Li, H. 2016, Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences, Bioinformatics, 32, 2103–10.

29. Di Genova, A., Buena-Atienza, E., Ossowski, S. and Sagot, M.-F. 2021, Efficient hybrid de novo assembly of human genomes with WENGAN, Nat. Biotechnol., 39, 422–30.

30. Haghshenas, E., Asghari, H., Stoye, J., Chauve, C. and Hach, F. 2020, HASLR: fast hybrid assembly of long reads, iScience, 23, 101389.

31. Haas, B.J., Papanicolaou, A., Yassour, M., et al. 2013, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc., 8, 1494–512.

32. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. and Kingsford, C. 2017, Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods, 14, 417–9.

33. Takanashi, K., Nakagawa, Y., Aburaya, S., et al. 2019, Comparative proteomic analysis of Lithospermum erythrorhizon reveals regulation of a variety of metabolic enzymes leading to comprehensive understanding of the shikonin biosynthetic Pathway, Plant Cell Physiol., 60, 19–28.

34. Tang, C.-Y., Li, S., Wang, Y.-T. and Wang, X. 2020, Comparative genome/transcriptome analysis probes Boraginales’ phylogenetic position, WGDs in Boraginales, and key enzyme genes in the alkannin/shikonin core pathway, Mol. Ecol. Resour., 20, 228–41.

35. Tang, C. 2021, Exploring the evolutionary process of alkannin/shikonin O-acyltransferases by a reliable Lithospermum erythrorhizon genome, DNA Res., 28, dsab015.

36. Zhu, Y., Lu, G.-H., Bian, Z.-W., et al. 2017, Involvement of LeMDR, an ATP-binding cassette protein gene, in shikonin transport and biosynthesis in Lithospermum erythrorhizon, BMC Plant Biol., 17, 198.

37. Zhu, Y., Chu, S.-J., Luo, Y.-L., et al. 2018, Involvement of LeMRP, an ATP-binding cassette transporter, in shikonin transport and biosynthesis in Lithospermum erythrorhizon, Plant Biol. (Stuttg.), 20, 365–73.

38. Nakamura, T., Yamada, K.D., Tomii, K. and Katoh, K. 2018, Parallelization of MAFFT for large-scale multiple sequence alignments, Bioinformatics., 34, 2490–2.

39. Price, M.N., Dehal, P.S. and Arkin, A.P. 2010, FastTree 2—approximately maximum-likelihood trees for large alignments, PLoS One, 5, e9490.

40. Terasaka, K., Blakeslee, J.J., Titapiwatanakun, B., et al. 2005, PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots, Plant Cell, 17, 2922–39.

41. Blakeslee, J.J., Bandyopadhyay, A., Lee, O.R., et al. 2007, Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis, Plant Cell, 19, 131–47.

42. Henrichs, S., Wang, B., Fukao, Y., et al. 2012, Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation, EMBO J., 31, 2965–80.

43. Kamimoto, Y., Terasaka, K., Hamamoto, M., et al. 2012, Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration, Plant Cell Physiol., 53, 2090–100.

44. Shitan, N., Bazin, I., Dan, K., et al. 2003, Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica, Proc. Natl. Acad. Sci. USA, 100, 751–6.

45. Sasaki, T., Ezaki, B. and Matsumoto, H. 2002, A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat, Plant Cell Physiol., 43, 177–85.

46. Takanashi, K., Sugiyama, A., Sato, S., Tabata, S. and Yazaki, K. 2012, LjABCB1, an ATP-binding cassette protein specifically induced in uninfected cells of Lotus japonicus nodules, J. Plant Physiol., 169, 322–6.

47. Shitan, N., Dalmas, F., Dan, K., et al. 2013, Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport, Phytochemistry., 91, 109–16.

48. Miao, G.-P., Han, J., Zhang, J.-F., Zhu, C.-S. and Zhang, X. 2017, A MDR transporter contributes to the different extracellular production of sesquiterpene pyridine alkaloids between adventitious root and hairy root liquid cultures of Tripterygium wilfordii Hook.f, Plant Mol. Biol., 95, 51–62.

49. Wanke, D. and Kolukisaoglu, H.U. 2010, An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions?, Plant Biol., 12, 15–25.

50. Lu, Y.-P., Li, Z.-S., Drozdowicz, Y.M., Hortensteiner, S., Martinoia, E. and Rea, P.A. 1998, AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1, Plant Cell, 10, 267–82.

51. Frelet-Barrand, A., Kolukisaoglu, H.U., Plaza, S., et al. 2008, Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation, Plant Cell Physiol., 49, 557–69.

52. Nagy, R., Grob, H., Weder, B., et al. 2009, The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage, J. Biol. Chem., 284, 33614–22.

53. Song, W.-Y., Park, J., Mendoza-Co´ zatl, D.G., et al. 2010, Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters, Proc. Natl. Acad. Sci. USA, 107, 21187–92.

54. Park, J., Song, W.-Y., Ko, D., et al. 2012, The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury, Plant J., 69, 278–88.

55. Raichaudhuri, A., Peng, M., Naponelli, V., et al. 2009, Plant vacuolar ATP-binding cassette transporters that translocate folates and antifolates in vitro and contribute to antifolate tolerance in vivo, J. Biol. Chem., 284, 8449–60.

56. Goodman, C.D., Casati, P. and Walbot, V. 2004, A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays, Plant Cell, 16, 1812–26.

57. Do, T.H.T., Choi, H., Palmgren, M., Martinoia, E., Hwang, J.-U. and Lee, Y. 2019, Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes, Proc. Natl. Acad. Sci. USA, 116, 12540–9.

58. Shiono, K., Ando, M., Nishiuchi, S., et al. 2014, RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa), Plant J., 80, 40–51.

59. Kuromori, T., Miyaji, T., Yabuuchi, H., et al. 2010, ABC transporter AtABCG25 is involved in abscisic acid transport and responses, Proc. Natl. Acad. Sci. USA, 107, 2361–6.

60. Matsuda, S., Takano, S., Sato, M., et al. 2016, Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter RCN1/OsABCG5, Mol. Plant., 9, 417–27.

61. Bird, D., Beisson, F., Brigham, A., et al. 2007, Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion, Plant J., 52, 485–98.

62. Panikashvili, D., Shi, J.X., Schreiber, L. and Aharoni, A. 2011, The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis, New Phytol., 190, 113–24.

63. Philippe, G., Sørensen, I., Jiao, C., et al. 2020, Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds, Curr. Opin. Plant Biol., 55, 11–20.

64. Landgraf, R., Smolka, U., Altmann, S., et al. 2014, The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm, Plant Cell, 26, 3403–15.

65. Choi, H., Ohyama, K., Kim, Y.-Y., et al. 2014, The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat, Plant Cell, 26, 310–24.

66. Zhu, B., Li, H., Xia, X., et al. 2020, ATP-binding cassette G transporters SGE1 and MtABCG13 control stigma exsertion, Plant Physiol., 184, 223–35.

67. Ko, D., Kang, J., Kiba, T., et al. 2014, Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin, Proc. Natl. Acad. Sci. USA, 111, 7150–5.

68. Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand- Brynaert, J. and Boutry, M. 2001, A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion, Plant Cell, 13, 1095–107.

69. Eichhorn, H., Klinghammer, M., Becht, P. and Tenhaken, R. 2006, Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid, J. Exp. Bot., 57, 2193–201.

70. Ruocco, M., Ambrosino, P., Lanzuise, S., Woo, S.L., Lorito, M. and Scala, F. 2011, Four potato (Solanum tuberosum) ABCG transporters and their expression in response to abiotic factors and Phytophthora infestans infection, J. Plant Physiol., 168, 2225–33.

71. Kretzschmar, T., Kohlen, W., Sasse, J., et al. 2012, A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching, Nature, 483, 341–4.

72. Migocka, M., Papierniak, A. and Rajsz, A. 2017, Cucumber PDR8/ABCG36 and PDR12/ABCG40 plasma membrane proteins and their up-regulation under abiotic stresses, Biol. Plant, 61, 115–26.

73. Fu, X., Shi, P., He, Q., et al. 2017, AaPDR3, a PDR transporter 3, is involved in sesquiterpene b-caryophyllene transport in Artemisia annua, Front. Plant Sci., 8, 723.

74. Jarzyniak, K., Banasiak, J., Jamruszka, T., et al. 2021, Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins, Nat. Plants, 7, 428–36.

75. Do, T.M., Ouellet, M., Calon, F., et al. 2011, Direct evidence of abca1-mediated efflux of cholesterol at the mouse blood-brain barrier, Mol. Cell. Biochem., 357, 397–404.

76. Liu, S.-L., Sheng, R., Jung, J.H., et al. 2017, Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol, Nat. Chem. Biol., 13, 268–74.

77. Ishigami, M., Ogasawara, F., Nagao, K., et al. 2018, Temporary sequestration of cholesterol and phosphatidylcholine within extracellular domains of ABCA1 during nascent HDL generation, Sci. Rep., 8, 6170.

78. Xie, T., Zhang, Z., Fang, Q., Du, B. and Gong, X. 2021, Structural basis of substrate recognition and translocation by human ABCA4, Nat. Commun., 12, 3853.

79. Petersen, B.O., Jørgensen, B. and Albrechtsen, M. 2004, Isolation and RNA silencing of homologues of the RNase L inhibitor in Nicotiana species, Plant Sci., 167, 1283–9.

80. Kougioumoutzi, E., Cartolano, M., Canales, C., et al. 2013, SIMPLE LEAF3 encodes a ribosome-associated protein required for leaflet development in Cardamine hirsuta, Plant J., 73, 533–45.

81. Zolman, B.K., Silva, I.D. and Bartel, B. 2001, The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid b-oxidation, Plant Physiol., 127, 1266–78.

82. Hayashi, M., Nito, K., Takei-Hoshi, R., et al. 2002, Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid b-oxidation, Plant Cell Physiol., 43, 1–11.

83. Footitt, S., Slocombe, S.P., Larner, V., et al. 2002, Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP, EMBO J., 21, 2912–22.

84. De Marcos Lousa, C., van Roermund, C.W.T., Postis, V.L.G., et al. 2013, Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids, Proc. Natl. Acad. Sci. USA, 110, 1279–84.

85. Block, A., Widhalm, J.R., Fatihi, A., et al. 2014, The origin and biosynthesis of the benzenoid moiety of ubiquinone (coenzyme Q) in Arabidopsis, Plant Cell, 26, 1938–48.

86. Meng, D., Gu, Z., Li, W., et al. 2014, Apple MdABCF assists in the transportation of S-RNase into pollen tubes, Plant J., 78, 990–1002.

87. Kaundal, A., Ramu, V.S., Oh, S., et al. 2017, General control nonrepressible4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance, Plant Cell, 29, 2233–48.

88. Izquierdo, Y., Kulasekaran, S., Benito, P., et al. 2018, Arabidopsis nonresponding to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that mediates noncanonical translation regulation and stress adaptation, Plant Cell Environ., 41, 1438–52.

89. Han, T.-T., Liu, W.-C. and Lu, Y.-T. 2018, General control non-repressible 20 (GCN20) functions in root growth by modulating DNA damage repair in Arabidopsis, BMC Plant Biol., 18, 274.

90. Dong, Q., Magwanga, R.O., Cai, X., et al. 2019, RNA-sequencing, physiological and RNAi analyses provide insights into the response mechanism of the ABC-mediated resistance to Verticillium dahliae infection in cotton, Genes, 10, 110.

91. Huang, C.-F., Yamaji, N. and Ma, J.F. 2010, Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis, Plant Physiol., 153, 1669–77.

92. Yamamoto, H., Zhao, P., Yazaki, K. and Inoue, K. 2002, Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures, Chem. Pharm. Bull. (Tokyo), 50, 1086–90.

93. Yazaki, K., Takeda, K. and Tabata, M. 1997, Effects of methyl jasmonate on shikonin and dihydroechinofuran production in Lithospermum cell cultures, Plant Cell Physiol., 38, 776–82.

94. Yamamoto, H., Tsukahara, M., Yamano, Y., Wada, A. and Yazaki, K. 2020, Alcohol dehydrogenase activity converts 300-hydroxy-geranylhydroquinone to an aldehyde intermediate for shikonin and benzoquinone derivatives in Lithospermum erythrorhizon, Plant Cell Physiol., 61, 1798–806.

95. Tsukada, M. and Tabata, M. 1984, Intracellular localization and secretion of naphthoquinone pigments in cell cultures of Lithospermum erythrorhizon, Planta Med., 50, 338–41.

96. Kiyoto, S., Ichino, T., Awano, T. and Yazaki, K. 2022, Improved chemical fixation of lipid-secreting plant cells for transmission electron microscopy, Microscopy, 71, in press.

97. Mirzaei, S.A., Reiisi, S., Ghiasi Tabari, P., et al. 2018, Broad blocking of MDR efflux pumps by acetylshikonin and acetoxyisovalerylshikonin to generate hypersensitive phenotype of malignant carcinoma cells, Sci. Rep., 8, 3446.

98. Ha¨ usler, E., Petersen, M. and Alfermann, A.W. 1993, Isolation of protoplasts and vacuoles from cell suspension cultures of Coleus blumei Benth, Plant Cell Rep., 12, 510–2.

99. Kang, J., Hwang, J.-U., Lee, M., et al. 2010, PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid, Proc. Natl. Acad. Sci. USA, 107, 2355–60.

100. Pierman, B., Toussaint, F., Bertin, A., et al. 2017, Activity of the purified plant ABC transporter NtPDR1 is stimulated by diterpenes and sesquiterpenes involved in constitutive and induced defenses, J. Biol. Chem., 292, 19491–502.

101. Biala, W., Banasiak, J., Jarzyniak, K., Pawela, A. and Jasinski, M. 2017, Medicago truncatula ABCG10 is a transporter of 4-coumarate and liquiritigenin in the medicarpin biosynthetic pathway, J. Exp. Bot., 68, 3231–41.

102. Ashraf, M.A., Akihiro, T., Ito, K., et al. 2021, ATP binding cassette proteins ABCG37 and ABCG33 function as potassium-independent cesium uptake carriers in Arabidopsis roots, Mol. Plant, 14, 664–78.

103. Choi, H., Jin, J.-Y., Choi, S., et al. 2011, An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen, Plant J., 65, 181–93.

104. Ichino, T. and Yazaki, K. 2022, Modes of secretion of plant lipophilic metabolites via ABCG transporter-dependent transport and vesicle-mediated trafficking, Curr. Opin. Plant Biol., 66, 102184.

105. Lefe`vre, F., Baijot, A. and Boutry, M. 2015, Plant ABC transporters: time for biochemistry?, Biochem. Soc. Trans., 43, 931–6.

106. Gra¨ fe, K., Shanmugarajah, K., Zobel, T., et al. 2019, Cloning and expression of selected ABC transporters from the Arabidopsis thaliana ABCG family in Pichia pastoris, PLoS One., 14, e0211156.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る