リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis of tertiary alkylphosphonate oligonucleotides through light-driven radical-polar crossover reactions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis of tertiary alkylphosphonate oligonucleotides through light-driven radical-polar crossover reactions

Ota, Kenji Nagao, Kazunori Hata, Dai Sugiyama, Haruki Segawa, Yasutomo Tokunoh, Ryosuke Seki, Tomohiro Miyamoto, Naoya Sasaki, Yusuke Ohmiya, Hirohisa 京都大学 DOI:10.1038/s41467-023-42639-y

2023.10.31

概要

Chemical modification of nucleotides can improve the metabolic stability and target specificity of oligonucleotide therapeutics, and alkylphosphonates have been employed as charge-neutral replacements for naturally-occurring phosphodiester backbones in these compounds. However, at present, the alkyl moieties that can be attached to phosphorus atoms in these compounds are limited to methyl groups or primary/secondary alkyls, and such alkylphosphonate moieties can degrade during oligonucleotide synthesis. The present work demonstrates the tertiary alkylation of the phosphorus atoms of phosphites bearing two 2’-deoxynuclosides. This process utilizes a carbocation generated via a light-driven radical-polar crossover mechanism. This protocol provides tertiary alkylphosphonate structures that are difficult to synthesize using existing methods. The conversion of these species to oligonucleotides having charge-neutral alkylphosphonate linkages through a phosphoramidite-based approach was also confirmed in this study.

この論文で使われている画像

参考文献

1.

2.

3.

4.

Valeur, E. et al. New modalities for challenging targets in drug

discovery. Angew. Chem. -Int. Ed. 56, 10294–10323 (2017).

Blanco, M. J., Gardinier, K. M. & Namchuk, M. N. Advancing new

chemical modalities into clinical studies. ACS Med. Chem. Lett. 13,

1691–1698 (2022).

Crooke, S. T., Liang, W.-H., Crooke, R. M., Baker, B. F. & Geary, R. S.

Antisense drug discovery and development technology considered

in a pharmacological context. Biochem. Pharmacol. 189,

114196 (2021).

Hu, B. et al. Therapeutic siRNA: state of the art. Sig. Transduct.

Target. Ther. 5, 101 (2020).

Nature Communications | (2023)14:6856

20.

21.

22.

23.

24.

25.

26.

Egli, M. & Manoharan, M. Chemistry, structure and function of

approved oligonucleotide therapeutics. Nucleic Acids Res. 51,

2529–2573 (2023).

Wan, W. B. & Seth, P. P. The medicinal chemistry of therapeutic

oligonucleotides. J. Med. Chem. 59, 9645–9667 (2016).

McKenzie, L. K., El-Khoury, R., Thorpe, J. D., Damha, M. J. & Hollenstein, M. Recent progress in non-native nucleic acid modifications. Chem. Soc. Rev. 50, 5126–5164 (2021).

Clave, G., Reverte, M., Vasseur, J. J. & Smietana, M. Modified

internucleoside linkages for nuclease-resistant oligonucleotides.

RSC Chem. Biol. 2, 94–150 (2021).

Stec, W. J., Zon, G., Egan, W. & Stec, B. Automated solid-phase

synthesis, separation, and stereochemistry of phosphorothioate

analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc. 106,

6077–6079 (1984).

Shen, W. et al. Chemical modification of PS-ASO therapeutics

reduces cellular protein-binding and improves the therapeutic

index. Nat. Biotechnol. 37, 640–650 (2019).

Zhukov, S. A., Pyshnyi, D. V. & Kupryushkin, M. S. Synthesis of novel

representatives of phosphoryl guanidine oligonucleotides. Russ. J.

Bioorg. Chem. 47, 380–389 (2021).

Migawa, M. T. et al. Site-specific replacement of phosphorothioate

with alkyl phosphonate linkages enhances the therapeutic profile of

gapmer ASOs by modulating interactions with cellular proteins.

Nucleic Acids Res 47, 5465–5479 (2019).

Vasquez, G. et al. Evaluation of phosphorus and non-phosphorus

neutral oligonucleotide backbones for enhancing therapeutic index

of gapmer antisense oligonucleotides. Nucleic Acid Therap. 32,

40–50 (2021).

Naredla, R. R. & Klumpp, D. A. Contemporary carbocation chemistry: applications in organic synthesis. Chem. Rev. 113,

6905–6948 (2013).

Smith, M. B. & March, J. March’s Advanced Organic Chemistry:

Reactions, Mechanism and Structure; Wiley: pp 1037–1052. 2007.

Xiang, J. et al. Hindered dialkyl ether synthesis with electrogenerated carbocations. Nature 573, 398–402 (2019).

Go, S. Y. et al. A unified synthetic strategy to introduce heteroatoms

via electrochemical functionalization of alkyl organoboron

reagents. J. Am. Chem. Soc. 144, 9149–9160 (2022).

Zhu, Q. L., Gentry, E. C. & Knowles, R. R. Catalytic carbocation

generation enabled by the mesolytic cleavage of alkoxyamine

radical cations. Angew. Chem. -Int. Ed. 55, 9969–9973 (2016).

Sharma, S., Singh, J. & Sharma, A. Visible light assisted radicalpolar/polar-radical crossover reactions in organic synthesis. Adv.

Syn. Catal. 363, 3146–3169 (2021).

Murray, P. R. D. et al. Radical redox annulations: a general lightdriven method for the synthesis of saturated heterocycles. ACS

Catal. 12, 13732–13740 (2022).

Shibutani, S. et al. Organophotoredox-catalyzed decarboxylative

C(sp3)-O Bond Formation. J. Am. Chem. Soc. 142, 1211–1216 (2020).

Shibutani, S., Nagao, K. & Ohmiya, H. Organophotoredox-catalyzed

three-component coupling of heteroatom nucleophiles, alkenes,

and aliphatic redox active esters. Org. Lett. 23, 1798–1803 (2021).

Kobayashi, R. et al. Decarboxylative N-alkylation of azoles through

visible-light-mediated organophotoredox catalysis. Org. Lett. 23,

5415–5419 (2021).

Nakagawa, M. et al. Organophotoredox-catalyzed decarboxylative

N-alkylation of sulfonamides. ChemCatChem 13,

3930–3933 (2021).

Kodo, T., Nagao, K. & Ohmiya, H. Organophotoredox-catalyzed

semipinacol rearrangement via radical-polar crossover. Nat. Commun. 13, 2684 (2022).

Matsuo, T., Nagao, K. & Ohmiya, H. Light-driven radical-polar

crossover catalysis for cross-coupling with organosilanes. Tetrahedron Lett. 112, 154231 (2022).

Article

27. Takekawa, Y. et al. Light-driven radical-polar crossover catalysis

enabling decarboxylative fluorination of redox active esters. Chem.

Lett. 52, 41–43 (2023).

28. Ravikumar, V. T. & Kumar, R. K. Stereoselective synthesis of alkylphosphonates: a facile rearrangement of cyanoethyl-protected

nucleoside phosphoramidites. Org. Proc. Res. Dev. 8, 603–608

(2004).

29. Reich, D., Noble, A. & Aggarwal, V. K. Facile conversion of α-amino

acids into α-amino phosphonates by decarboxylative phosphorylation using visible-light photocatalysis. Angew. Chem. -Int. Ed. 61,

e202207063 (2022).

30. Yin, J. et al. Phosphonylation of alkyl radicals. Chem 9, 1945–1954

(2023).

31. Pagire, S. K., Shu, C., Reich, D., Noble, A. & Aggarwal, V. K. Convergent deboronative and decarboxylative phosphonylation

enabled by the phosphite radical trap “BecaP”. J. Am. Chem. Soc.

145, 18649–18657 (2023).

32. Nielsen, J. & Caruthers, M. H. Directed Arbuzov-type reactions of 2cyano-1,1-dimethylethyl deoxynucleoside phosphites. J. Am. Chem.

Soc. 110, 6275–6276 (1988).

33. Capaldi, D. C. et al. Formation of 4,4′-dimethoxytrityl-C-phosphonate oligonucleotides. Bioorg. Med. Chem. Lett. 14,

4683–4690 (2004).

34. Watanabe, M. et al. Spacer effects in metal-free organic dyes for

visible-light-driven dye-sensitized photocatalytic hydrogen production. J. Mater. Chem. A 2, 12952–12961 (2014).

35. Seidel, C. A. M., Schulz, A. & Sauer, M. H. M. Nucleobase-specific

quenching of fluorescent dyes. 1. Nucleobase one-electron redox

potentials and their correlation with static and dynamic quenching

efficiencies. J. Phys. Chem. 100, 5541–5553 (1996).

36. Braumüler, M., Sorsche, D., Wunderlin, M. & Rau, S. Modular

synthesis of elongated phosphonate bipyridines. Eur. J. Org. Chem.

2015, 5987–5994 (2015).

37. Tlahuext-Aca, A., Garza-Sanchez, R. A. & Glorius, F. Multicomponent oxyalkylation of styrenes enabled by hydrogen-bondassisted photoinduced electron transfer. Angew. Chem. -Int. Ed. 56,

3708–3711 (2017).

38. Qing, X., TingTing, Z. & Libiao, H. Preparation method of largesteric-hindrance alkyl substituted phosphite diester. Patent no.

CN110922427A (2020).

39. Meng, X. & Kim, S. Palladium(II)-catalyzed ortho-arylation of

benzylic phosphonic monoesters using potassium aryltrifluoroborates. J. Org. Chem. 78, 11247–11254 (2013).

40. Beaucage, S. L. & Caruthers, M. H. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862 (1981).

41. Caruthers, M. H. Gene synthesis machines: DNA chemistry and its

uses. Science 230, 281–285 (1985).

42. Li, C. et al. Fully automated fast-flow synthesis of antisense phosphorodiamidate morpholino oligomers. Nat. Commun. 12,

4396 (2021).

43. Liu, C. et al. Automated synthesis of prexasertib and derivatives

enabled by continuous-flow solid-phase synthesis. Nat. Chem. 13,

451–457 (2021).

Nature Communications | (2023)14:6856

https://doi.org/10.1038/s41467-023-42639-y

44. Li, C. et al. Automated flow synthesis of peptide−PNA conjugates.

ACS Cent. Sci. 8, 205–213 (2022).

Acknowledgements

This work was supported by the Takeda Pharmaceutical Company, Ltd.

and by JSPS KAKENHI grants (nos. JP21H04681, JP23H04912, and

JP22KJ1938) and a JST PRESTO grant (no. JPMJPR19T2). A part of this

work was conducted at the Institute for Molecular Science supported by

ARIM (JPMXP1223MS5012).

Author contributions

K.O., K.N., D.H., and H.O. conceived the project. K.O., D.H., K.N., R.T.,

T.S., N.M., Y. Sa., and H.O. performed the experiments and analyzed the

data. H.S. and Y. Se. performed X-ray crystallography analyses. K.O.,

K.N., D.H., and H.O. co-wrote the manuscript. All authors contributed to

discussions.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-42639-y.

Correspondence and requests for materials should be addressed to

Kazunori Nagao, Dai Hata or Hirohisa Ohmiya.

Peer review information Nature Communications thanks Jie Wu and the

other, anonymous, reviewer(s) for their contribution to the peer review of

this work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る