リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection

Kumata, Ryuichi Iwanami, Shoya Mar, Katrina B. Kakizoe, Yusuke Misawa, Naoko Nakaoka, Shinji Koyanagi, Yoshio Perelson, Alan S. Schoggins, John W. Iwami, Shingo Sato, Kei 京都大学 DOI:10.1371/journal.pcbi.1010053

2022.04

概要

In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.

この論文で使われている画像

参考文献

1.

Gray RH, Wawer MJ, Brookmeyer R, Sewankambo NK, Serwadda D, Wabwire-Mangen F, et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in

Rakai, Uganda. Lancet. 2001; 357(9263):1149–53. Epub 2001/04/27. https://doi.org/10.1016/S01406736(00)04331-2 PMID: 11323041.

2.

Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1

infection. J Exp Med. 2009; 206(6):1273–89. Epub 2009/06/03. https://doi.org/10.1084/jem.20090378

PMID: 19487424; PubMed Central PMCID: PMC2715054.

3.

Pilcher CD, Fiscus SA, Nguyen TQ, Foust E, Wolf L, Williams D, et al. Detection of acute infections

during HIV testing in North Carolina. N Engl J Med. 2005; 352(18):1873–83. Epub 2005/05/06. https://

doi.org/10.1056/NEJMoa042291 PMID: 15872202.

4.

Talbert-Slagle K, Atkins KE, Yan KK, Khurana E, Gerstein M, Bradley EH, et al. Cellular superspreaders: an epidemiological perspective on HIV infection inside the body. PLoS Pathog. 2014; 10(5):

e1004092. Epub 2014/05/09. https://doi.org/10.1371/journal.ppat.1004092 PMID: 24811311; PubMed

Central PMCID: PMC4014458.

5.

Iyer SS, Bibollet-Ruche F, Sherrill-Mix S, Learn GH, Plenderleith L, Smith AG, et al. Resistance to type

1 interferons is a major determinant of HIV-1 transmission fitness. Proc Natl Acad Sci U S A. 2017;

114(4):E590–E9. Epub 2017/01/11. https://doi.org/10.1073/pnas.1620144114 PMID: 28069935;

PubMed Central PMCID: PMC5278458.

6.

Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, et al. Phenotypic properties of transmitted

founder HIV-1. Proc Natl Acad Sci U S A. 2013; 110(17):6626–33. Epub 2013/04/02. https://doi.org/

10.1073/pnas.1304288110 PMID: 23542380; PubMed Central PMCID: PMC3637789.

7.

Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, et al. HIV transmission.

Selection bias at the heterosexual HIV-1 transmission bottleneck. Science. 2014; 345(6193):1254031.

Epub 2014/07/12. https://doi.org/10.1126/science.1254031 PMID: 25013080; PubMed Central

PMCID: PMC4289910.

8.

Fenton-May AE, Dibben O, Emmerich T, Ding H, Pfafferott K, Aasa-Chapman MM, et al. Relative

resistance of HIV-1 founder viruses to control by interferon-α. Retrovirology. 2013; 10:146. Epub

2013/12/05. https://doi.org/10.1186/1742-4690-10-146 PMID: 24299076; PubMed Central PMCID:

PMC3907080.

9.

Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010; 140(6):805–20.

Epub 2010/03/23. https://doi.org/10.1016/j.cell.2010.01.022 PMID: 20303872.

10.

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124(4):783–

801. Epub 2006/02/25. https://doi.org/10.1016/j.cell.2006.02.015 PMID: 16497588.

11.

Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006; 7(2):131–7. Epub

2006/01/21. https://doi.org/10.1038/ni1303 PMID: 16424890.

12.

Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, et al. Type I interferon responses

by HIV-1 infection: association with disease progression and control. Front Immunol. 2017; 8:1823.

https://doi.org/10.3389/fimmu.2017.01823 PMID: 29379496; PubMed Central PMCID: PMC5775519.

13.

Kluge SF, Sauter D, Kirchhoff F. SnapShot: antiviral restriction factors. Cell. 2015; 163(3):774–e1.

Epub 2015/10/27. https://doi.org/10.1016/j.cell.2015.10.019 PMID: 26496613.

14.

Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who’s interfering with whom? Nat Rev Microbiol.

2015; 13(7):403–13. Epub 2015/04/29. https://doi.org/10.1038/nrmicro3449 PMID: 25915633.

15.

Agosto LM, Uchil PD, Mothes W. HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy. Trends Microbiol. 2015; 23(5):289–95. Epub 2015/03/15. https://doi.org/10.1016/j.tim.

2015.02.003 PMID: 25766144; PubMed Central PMCID: PMC4417442.

16.

Martin N, Sattentau Q. Cell-to-cell HIV-1 spread and its implications for immune evasion. Curr Opin

HIV AIDS. 2009; 4(2):143–9. Epub 2009/04/03. https://doi.org/10.1097/COH.0b013e328322f94a

PMID: 19339954.

17.

Sattentau Q. Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol. 2008; 6

(11):815–26. Epub 2008/10/17. https://doi.org/10.1038/nrmicro1972 PMID: 18923409.

18.

Graw F, Perelson AS. Modeling Viral Spread. Annu Rev Virol. 2016; 3(1):555–72. Epub 2016/09/13.

https://doi.org/10.1146/annurev-virology-110615-042249 PMID: 27618637; PubMed Central PMCID:

PMC5072357.

19.

Iwami S, Takeuchi JS, Nakaoka S, Mammano F, Clavel F, Inaba H, et al. Cell-to-cell infection by HIV

contributes over half of virus infection. Elife. 2015; 4. https://doi.org/10.7554/eLife.08150 PMID:

26441404; PubMed Central PMCID: PMC4592948.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010053 April 25, 2022

22 / 27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PLOS COMPUTATIONAL BIOLOGY

Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection

20.

Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986; 59(2):284–91. Epub 1986/08/01. PubMed Central PMCID:

PMC253077. https://doi.org/10.1128/JVI.59.2.284-291.1986 PMID: 3016298

21.

Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O. Inefficient human immunodeficiency

virus replication in mobile lymphocytes. J Virol. 2007; 81(2):1000–12. Epub 2006/11/03. https://doi.

org/10.1128/JVI.01629-06 PMID: 17079292; PubMed Central PMCID: PMC1797449.

22.

Goujon C, Malim MH. Characterization of the alpha interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells. J Virol. 2010; 84(18):9254–66. Epub 2010/07/09.

https://doi.org/10.1128/JVI.00854-10 PMID: 20610724; PubMed Central PMCID: PMC2937661.

23.

Neil SJ, Sandrin V, Sundquist WI, Bieniasz PD. An interferon-alpha-induced tethering mechanism

inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host

Microbe. 2007; 2(3):193–203. https://doi.org/10.1016/j.chom.2007.08.001 PMID: 18005734; PubMed

Central PMCID: PMC3793644.

24.

Lodermeyer V, Suhr K, Schrott N, Kolbe C, Sturzel CM, Krnavek D, et al. 90K, an interferon-stimulated

gene product, reduces the infectivity of HIV-1. Retrovirology. 2013; 10:111. Epub 20131024. https://

doi.org/10.1186/1742-4690-10-111 PMID: 24156545; PubMed Central PMCID: PMC3827937.

25.

Dillon SM, Guo K, Austin GL, Gianella S, Engen PA, Mutlu EA, et al. A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis.

AIDS. 2018; 32(12):1599–611. https://doi.org/10.1097/QAD.0000000000001863 PMID: 29762170;

PubMed Central PMCID: PMC6054446.

26.

Hardy GA, Sieg S, Rodriguez B, Anthony D, Asaad R, Jiang W, et al. Interferon-alpha is the primary

plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers.

PLoS One. 2013; 8(2):e56527. Epub 20130220. https://doi.org/10.1371/journal.pone.0056527 PMID:

23437155; PubMed Central PMCID: PMC3577907.

27.

Ikeda H, Godinho-Santos A, Rato S, Vanwalscappel B, Clavel F, Aihara K, et al. Quantifying the antiviral effect of IFN on HIV-1 replication in cell culture. Sci Rep. 2015; 5:11761. Epub 2015/06/30. https://

doi.org/10.1038/srep11761 PMID: 26119462; PubMed Central PMCID: PMC4483772.

28.

Neumann A, Polis M, Rozenberg L, Jackson J, Reitano K, McLaughlin M, et al. Differential antiviral

effect of PEG-interferon-α-2b on HIV and HCV in the treatment of HIV/HCV co-infected patients.

AIDS. 2007; 21(14):1855–65. Epub 2007/08/28. https://doi.org/10.1097/QAD.0b013e32825eaba7

PMID: 17721093.

29.

Harper MS, Guo K, Gibbert K, Lee EJ, Dillon SM, Barrett BS, et al. Interferon-α subtypes in an ex vivo

model of acute HIV-1 infection: expression, potency and effector mechanisms. PLoS Pathog. 2015; 11

(11):e1005254. Epub 2015/11/04. https://doi.org/10.1371/journal.ppat.1005254 PMID: 26529416;

PubMed Central PMCID: PMC4631339.

30.

Schoggins JW. Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol. 2014; 6:40–6.

Epub 2014/04/10. https://doi.org/10.1016/j.coviro.2014.03.006 PMID: 24713352; PubMed Central

PMCID: PMC4077717.

31.

Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host

defenses. Annu Rev Immunol. 2014; 32:513–45. Epub 2014/02/22. https://doi.org/10.1146/annurevimmunol-032713-120231 PMID: 24555472; PubMed Central PMCID: PMC4313732.

32.

Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, et al. MX2 is an interferon-induced

inhibitor of HIV-1 infection. Nature. 2013; 502(7472):563–6. Epub 2013/10/15. https://doi.org/10.1038/

nature12653 PMID: 24121441; PubMed Central PMCID: PMC3912734.

33.

Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, et al. Human MX2 is an interferoninduced post-entry inhibitor of HIV-1 infection. Nature. 2013; 502(7472):559–62. Epub 2013/09/21.

https://doi.org/10.1038/nature12542 PMID: 24048477; PubMed Central PMCID: PMC3808269.

34.

Foster TL, Wilson H, Iyer SS, Coss K, Doores K, Smith S, et al. Resistance of transmitted founder

HIV-1 to IFITM-mediated restriction. Cell Host Microbe. 2016; 20(4):429–42. Epub 2016/09/20. https://

doi.org/10.1016/j.chom.2016.08.006 PMID: 27640936; PubMed Central PMCID: PMC5075283.

35.

Compton AA, Bruel T, Porrot F, Mallet A, Sachse M, Euvrard M, et al. IFITM proteins incorporated into

HIV-1 virions impair viral fusion and spread. Cell Host Microbe. 2014; 16(6):736–47. Epub 2014/12/04.

https://doi.org/10.1016/j.chom.2014.11.001 PMID: 25464829.

36.

Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, et al. The interferoninduced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral

Vpu protein. Cell Host Microbe. 2008; 3(4):245–52. Epub 2008/03/18. https://doi.org/10.1016/j.chom.

2008.03.001 PMID: 18342597; PubMed Central PMCID: PMC2474773.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010053 April 25, 2022

23 / 27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PLOS COMPUTATIONAL BIOLOGY

Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection

37.

Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

Nature. 2008; 451(7177):425–30. Epub 2008/01/18. https://doi.org/10.1038/nature06553 PMID:

18200009.

38.

Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T, Alim M, et al. Identification of Interferon-Stimulated

Genes with Antiretroviral Activity. Cell Host Microbe. 2016; 20(3):392–405. Epub 2016/09/16. https://

doi.org/10.1016/j.chom.2016.08.005 PMID: 27631702; PubMed Central PMCID: PMC5026698.

39.

Yamasoba D, Sato K, Ichinose T, Imamura T, Koepke L, Joas S, et al. N4BP1 restricts HIV-1 and its

inactivation by MALT1 promotes viral reactivation. Nat Microbiol. 2019. Epub 2019/05/28. https://doi.

org/10.1038/s41564-019-0460-3 PMID: 31133753.

40.

Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification

and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc

Natl Acad Sci U S A. 2008; 105(21):7552–7. Epub 2008/05/21. https://doi.org/10.1073/pnas.

0802203105 PMID: 18490657; PubMed Central PMCID: PMC2387184.

41.

Mar KB, Rinkenberger NR, Boys IN, Eitson JL, McDougal MB, Richardson RB, et al. LY6E mediates

an evolutionarily conserved enhancement of virus infection by targeting a late entry step. Nat Commun. 2018; 9(1):3603. Epub 2018/09/08. https://doi.org/10.1038/s41467-018-06000-y PMID:

30190477; PubMed Central PMCID: PMC6127192.

42.

Yu J, Liang C, Liu SL. Interferon-inducible LY6E Protein Promotes HIV-1 Infection. J Biol Chem. 2017;

292(11):4674–85. Epub 2017/01/29. https://doi.org/10.1074/jbc.M116.755819 PMID: 28130445;

PubMed Central PMCID: PMC5377782.

43.

Hackett BA, Cherry S. Flavivirus internalization is regulated by a size-dependent endocytic pathway.

Proc Natl Acad Sci U S A. 2018; 115(16):4246–51. Epub 2018/04/04. https://doi.org/10.1073/pnas.

1720032115 PMID: 29610346; PubMed Central PMCID: PMC5910848.

44.

Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene

products are effectors of the type I interferon antiviral response. Nature. 2011; 472(7344):481–5. Epub

2011/04/12. https://doi.org/10.1038/nature09907 PMID: 21478870; PubMed Central PMCID:

PMC3409588.

45.

Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, et al. RNA interference screen for

human genes associated with West Nile virus infection. Nature. 2008; 455(7210):242–5. Epub 2008/

08/12. https://doi.org/10.1038/nature07207 PMID: 18690214; PubMed Central PMCID:

PMC3136529.

46.

Browne EP, Letham B, Rudin C. A Computational Model of Inhibition of HIV-1 by Interferon-Alpha.

PLoS One. 2016; 11(3):e0152316. Epub 2016/03/25. https://doi.org/10.1371/journal.pone.0152316

PMID: 27010978; PubMed Central PMCID: PMC4807028.

47.

Ribeiro RM, Qin L, Chavez LL, Li D, Self SG, Perelson AS. Estimation of the initial viral growth rate

and basic reproductive number during acute HIV-1 infection. J Virol. 2010; 84(12):6096–102. Epub

2010/04/02. https://doi.org/10.1128/JVI.00127-10 PMID: 20357090; PubMed Central PMCID:

PMC2876646.

48.

Talemi SR, Hofer T. Antiviral interferon response at single-cell resolution. Immunol Rev. 2018; 285

(1):72–80. https://doi.org/10.1111/imr.12699 PMID: 30129203.

49.

Kumar S, Morrison JH, Dingli D, Poeschla E. HIV-1 Activation of Innate Immunity Depends Strongly

on the Intracellular Level of TREX1 and Sensing of Incomplete Reverse Transcription Products. J

Virol. 2018;92(16). Epub 20180731. https://doi.org/10.1128/JVI.00001-18 PMID: 29769349; PubMed

Central PMCID: PMC6069178.

50.

Padmanabhan P, Garaigorta U, Dixit NM. Emergent properties of the interferon-signalling network

may underlie the success of hepatitis C treatment. Nat Commun. 2014; 5:3872. Epub 20140516.

https://doi.org/10.1038/ncomms4872 PMID: 24834957.

51.

Garaigorta U, Chisari FV. Hepatitis C virus blocks interferon effector function by inducing protein

kinase R phosphorylation. Cell Host Microbe. 2009; 6(6):513–22. https://doi.org/10.1016/j.chom.2009.

11.004 PMID: 20006840; PubMed Central PMCID: PMC2905238.

52.

Aso H, Ito J, Koyanagi Y, Sato K. Comparative description of the expression profile of interferon-stimulated genes in multiple cell lineages targeted by HIV-1 infection. Front Microbiol. 2019; 10:429. Epub

2019/03/28. https://doi.org/10.3389/fmicb.2019.00429 PMID: 30915053; PubMed Central PMCID:

PMC6423081.

53.

Hyrcza MD, Kovacs C, Loutfy M, Halpenny R, Heisler L, Yang S, et al. Distinct transcriptional profiles

in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional

changes in CD8+ T cells. J Virol. 2007; 81(7):3477–86. Epub 2007/01/26. https://doi.org/10.1128/JVI.

01552-06 PMID: 17251300; PubMed Central PMCID: PMC1866039.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010053 April 25, 2022

24 / 27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PLOS COMPUTATIONAL BIOLOGY

Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection

54.

Sedaghat AR, German J, Teslovich TM, Cofrancesco J Jr., Jie CC, Talbot CC Jr., et al. Chronic CD4+

T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferonmediated disruption of T-cell dynamics. J Virol. 2008; 82(4):1870–83. Epub 2007/12/14. https://doi.

org/10.1128/JVI.02228-07 PMID: 18077723; PubMed Central PMCID: PMC2258719.

55.

Xu X, Qiu C, Zhu L, Huang J, Li L, Fu W, et al. IFN-stimulated gene LY6E in monocytes regulates the

CD14/TLR4 pathway but inadequately restrains the hyperactivation of monocytes during chronic HIV1 infection. J Immunol. 2014; 193(8):4125–36. Epub 2014/09/17. https://doi.org/10.4049/jimmunol.

1401249 PMID: 25225669.

56.

Yu J, Liang C, Liu SL. CD4-Dependent Modulation of HIV-1 Entry by LY6E. J Virol. 2019; 93(7). Epub

2019/01/25. https://doi.org/10.1128/JVI.01866-18 PMID: 30674630; PubMed Central PMCID:

PMC6430548.

57.

Pfaender S, Mar KB, Michailidis E, Kratzel A, Boys IN, V’Kovski P, et al. LY6E impairs coronavirus

fusion and confers immune control of viral disease. Nat Microbiol. 2020;in press. Epub 2020/07/25.

https://doi.org/10.1038/s41564-020-0769-y PMID: 32704094.

58.

Agosto LM, Zhong P, Munro J, Mothes W. Highly active antiretroviral therapies are effective against

HIV-1 cell-to-cell transmission. PLoS Pathog. 2014; 10(2):e1003982. Epub 2014/03/04. https://doi.

org/10.1371/journal.ppat.1003982 PMID: 24586176; PubMed Central PMCID: PMC3937346.

59.

Duncan CJ, Russell RA, Sattentau QJ. High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. AIDS. 2013; 27(14):2201–6. Epub 2013/09/06.

https://doi.org/10.1097/QAD.0b013e3283632ec4 PMID: 24005480; PubMed Central PMCID:

PMC4714465.

60.

Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, et al. Cell-to-cell spread of HIV permits ongoing

replication despite antiretroviral therapy. Nature. 2011; 477(7362):95–8. Epub 2011/08/19. https://doi.

org/10.1038/nature10347 PMID: 21849975.

61.

Best S, Le Tissier P, Towers G, Stoye JP. Positional cloning of the mouse retrovirus restriction gene

Fv1. Nature. 1996; 382(6594):826–9. Epub 1996/08/29. https://doi.org/10.1038/382826a0 PMID:

8752279.

62.

Pryciak PM, Varmus HE. Fv-1 restriction and its effects on murine leukemia virus integration in vivo

and in vitro. J Virol. 1992; 66(10):5959–66. Epub 1992/10/01. https://doi.org/10.1128/JVI.66.10.59595966.1992 PMID: 1326652; PubMed Central PMCID: PMC241473.

63.

Jimenez-Guardeno JM, Apolonia L, Betancor G, Malim MH. Immunoproteasome activation enables

human TRIM5α restriction of HIV-1. Nat Microbiol. 2019; 4(6):933–40. Epub 2019/03/20. https://doi.

org/10.1038/s41564-019-0402-0 PMID: 30886358; PubMed Central PMCID: PMC6544544.

64.

Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature. 2004; 427(6977):848–53.

Epub 2004/02/27. https://doi.org/10.1038/nature02343 PMID: 14985764.

65.

Passerini LD, Keckesova Z, Towers GJ. Retroviral restriction factors Fv1 and TRIM5α act independently and can compete for incoming virus before reverse transcription. J Virol. 2006; 80(5):2100–5.

Epub 2006/02/14. https://doi.org/10.1128/JVI.80.5.2100-2105.2006 PMID: 16474118; PubMed Central PMCID: PMC1395401.

66.

Shi J, Aiken C. Saturation of TRIM5α-mediated restriction of HIV-1 infection depends on the stability of

the incoming viral capsid. Virology. 2006; 350(2):493–500. Epub 2006/04/21. https://doi.org/10.1016/j.

virol.2006.03.013 PMID: 16624363.

67.

Sanz-Ramos M, Stoye JP. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics. J Gen Virol. 2013; 94(Pt 12):2587–98.

Epub 2013/09/13. https://doi.org/10.1099/vir.0.058180-0 PMID: 24026671.

68.

Sauter D, Kirchhoff F. IFITMs: Important Factors In Trans-Mission of HIV-1. Cell Host Microbe. 2016;

20(4):407–8. Epub 2016/10/14. https://doi.org/10.1016/j.chom.2016.09.009 PMID: 27736636.

69.

Yu J, Li M, Wilkins J, Ding S, Swartz TH, Esposito AM, et al. IFITM proteins restrict HIV-1 infection by

antagonizing the envelope glycoprotein. Cell Rep. 2015; 13(1):145–56. Epub 2015/09/22. https://doi.

org/10.1016/j.celrep.2015.08.055 PMID: 26387945; PubMed Central PMCID: PMC4602366.

70.

Tartour K, Appourchaux R, Gaillard J, Nguyen XN, Durand S, Turpin J, et al. IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity. Retrovirology. 2014; 11:103.

Epub 2014/11/26. https://doi.org/10.1186/s12977-014-0103-y PMID: 25422070; PubMed Central

PMCID: PMC4251951.

71.

Cheney KM, McKnight A. Interferon-α mediates restriction of human immunodeficiency virus type-1

replication in primary human macrophages at an early stage of replication. PLoS One. 2010; 5(10):

e13521. Epub 2010/10/27. https://doi.org/10.1371/journal.pone.0013521 PMID: 20975956; PubMed

Central PMCID: PMC2958147.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010053 April 25, 2022

25 / 27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PLOS COMPUTATIONAL BIOLOGY

Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection

72.

Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, et al. Type I interferon responses in

rhesus macaques prevent SIV infection and slow disease progression. Nature. 2014; 511(7511):601–

5. Epub 2014/07/22. https://doi.org/10.1038/nature13554 PMID: 25043006; PubMed Central PMCID:

PMC4418221.

73.

Yamada E, Nakaoka S, Klein L, Reith E, Langer S, Hopfensperger K, et al. Human-specific adaptations in Vpu conferring anti-tetherin activity are critical for efficient early HIV-1 replication in vivo. Cell

Host Microbe. 2018; 23(1):110–20 e7. https://doi.org/10.1016/j.chom.2017.12.009 PMID: 29324226.

74.

Cheng L, Yu H, Li G, Li F, Ma J, Li J, et al. Type I interferons suppress viral replication but contribute to

T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight. 2017; 2(12). Epub 2017/

06/15. https://doi.org/10.1172/jci.insight.94366 PMID: 28614789; PubMed Central PMCID:

PMC5470878.

75.

Law KM, Komarova NL, Yewdall AW, Lee RK, Herrera OL, Wodarz D, et al. In vivo HIV-1 cell-to-cell

transmission promotes multicopy micro-compartmentalized infection. Cell Rep. 2016; 15(12):2771–

83. Epub 2016/06/14. https://doi.org/10.1016/j.celrep.2016.05.059 PMID: 27292632.

76.

Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T

cells are migratory vehicles for viral dissemination. Nature. 2012; 490(7419):283–7. Epub 2012/08/03.

https://doi.org/10.1038/nature11398 PMID: 22854780; PubMed Central PMCID: PMC3470742.

77.

Ladinsky MS, Kieffer C, Olson G, Deruaz M, Vrbanac V, Tager AM, et al. Electron tomography of HIV1 infection in gut-associated lymphoid tissue. PLoS Pathog. 2014; 10(1):e1003899. Epub 2014/02/06.

https://doi.org/10.1371/journal.ppat.1003899 PMID: 24497830; PubMed Central PMCID:

PMC3907528.

78.

Real F, Sennepin A, Ganor Y, Schmitt A, Bomsel M. Live imaging of HIV-1 transfer across T cell virological synapse to epithelial cells that promotes stromal macrophage infection. Cell Rep. 2018; 23

(6):1794–805. Epub 2018/05/10. https://doi.org/10.1016/j.celrep.2018.04.028 PMID: 29742434.

79.

Dixit NM, Perelson AS. Multiplicity of human immunodeficiency virus infections in lymphoid tissue. J

Virol. 2004; 78(16):8942–5. Epub 2004/07/29. https://doi.org/10.1128/JVI.78.16.8942-8945.2004

PMID: 15280505; PubMed Central PMCID: PMC479058.

80.

Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak M Jr., et al. Defining HIV and

SIV reservoirs in lymphoid tissues. Pathog Immun. 2016; 1(1):68–106. Epub 2016/07/19. https://doi.

org/10.20411/pai.v1i1.100 PMID: 27430032; PubMed Central PMCID: PMC4943335.

81.

Deleage C, Chan CN, Busman-Sahay K, Estes JD. Next-generation in situ hybridization approaches

to define and quantify HIV and SIV reservoirs in tissue microenvironments. Retrovirology. 2018; 15

(1):4. Epub 2018/01/11. https://doi.org/10.1186/s12977-017-0387-9 PMID: 29316956; PubMed Central PMCID: PMC5761108.

82.

Cavert W, Notermans DW, Staskus K, Wietgrefe SW, Zupancic M, Gebhard K, et al. Kinetics of

response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science. 1997; 276

(5314):960–4. Epub 1997/05/09. https://doi.org/10.1126/science.276.5314.960 PMID: 9139661.

83.

Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quantitative image analysis

of HIV-1 infection in lymphoid tissue. Science. 1996; 274(5289):985–9. Epub 1996/11/08. https://doi.

org/10.1126/science.274.5289.985 PMID: 8875941.

84.

Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology. 2018; 15(1):51. Epub 2018/07/30. https://doi.org/10.1186/s12977-018-0434-1 PMID:

30055632; PubMed Central PMCID: PMC6064125.

85.

Watanabe T, Urano E, Miyauchi K, Ichikawa R, Hamatake M, Misawa N, et al. The hematopoietic cellspecific Rho GTPase inhibitor ARHGDIB/D4GDI limits HIV type 1 replication. AIDS research and

human retroviruses. 2012; 28(8):913–22. Epub 2011/09/23. https://doi.org/10.1089/AID.2011.0180

PMID: 21936715.

86.

Ebina H, Kanemura Y, Misawa N, Sakuma T, Kobayashi T, Yamamoto T, et al. A high excision potential of TALENs for integrated DNA of HIV-based lentiviral vector. PLoS One. 2015; 10(3):e0120047.

Epub 2015/03/18. https://doi.org/10.1371/journal.pone.0120047 PMID: 25781496; PubMed Central

PMCID: PMC4363575.

87.

Ikeda T, Molan AM, Jarvis MC, Carpenter MA, Salamango DJ, Brown WL, et al. HIV-1 restriction by

endogenous APOBEC3G in the myeloid cell line THP-1. J Gen Virol. 2019; 100(7):1140–52. Epub

2019/05/31. https://doi.org/10.1099/jgv.0.001276 PMID: 31145054.

88.

Nakano Y, Yamamoto K, Ueda MT, Soper A, Konno Y, Kimura I, et al. A role for gorilla APOBEC3G in

shaping lentivirus evolution including transmission to humans. PLoS Pathog. 2020; 16(9):e1008812.

Epub 2020/09/12. https://doi.org/10.1371/journal.ppat.1008812 PMID: 32913367.

89.

Albin JS, Hache G, Hultquist JF, Brown WL, Harris RS. Long-term restriction by APOBEC3F selects

human immunodeficiency virus type 1 variants with restored Vif function. J Virol. 2010; 84(19):10209–

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010053 April 25, 2022

26 / 27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PLOS COMPUTATIONAL BIOLOGY

Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection

19. Epub 2010/08/06. https://doi.org/10.1128/JVI.00632-10 PMID: 20686027; PubMed Central

PMCID: PMC2937771.

90.

Nakano Y, Misawa N, Juarez-Fernandez G, Moriwaki M, Nakaoka S, Funo T, et al. HIV-1 competition

experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes

virus adaptation. PLoS Pathog. 2017; 13(5):e1006348. https://doi.org/10.1371/journal.ppat.1006348

PMID: 28475648; PubMed Central PMCID: PMC5435363.

91.

Sato K, Izumi T, Misawa N, Kobayashi T, Yamashita Y, Ohmichi M, et al. Remarkable lethal G-to-A

mutations in vif-proficient HIV-1 provirus by individual APOBEC3 proteins in humanized mice. Journal

of Virology. 2010; 84(18):9546–56. https://doi.org/10.1128/JVI.00823-10 PMID: 20610708.

92.

Sato K, Misawa N, Iwami S, Satou Y, Matsuoka M, Ishizaka Y, et al. HIV-1 Vpr accelerates viral replication during acute infection by exploitation of proliferating CD4+ T cells in vivo. PLoS Pathog. 2013; 9

(12):e1003812. Epub 2013/12/18. https://doi.org/10.1371/journal.ppat.1003812 PMID: 24339781;

PubMed Central PMCID: PMC3855622.

93.

Sato K, Takeuchi JS, Misawa N, Izumi T, Kobayashi T, Kimura Y, et al. APOBEC3D and APOBEC3F

potently promote HIV-1 diversification and evolution in humanized mouse model. PLoS Pathog. 2014;

10(10):e1004453. Epub 2014/10/21. https://doi.org/10.1371/journal.ppat.1004453 PMID: 25330146;

PubMed Central PMCID: PMC4199767.

94.

Freel SA, Picking RA, Ferrari G, Ding H, Ochsenbauer C, Kappes JC, et al. Initial HIV-1 antigen-specific CD8+ T cells in acute HIV-1 infection inhibit transmitted/founder virus replication. J Virol. 2012; 86

(12):6835–46. Epub 2012/04/20. https://doi.org/10.1128/JVI.00437-12 PMID: 22514337; PubMed

Central PMCID: PMC3393529.

95.

Ochsenbauer C, Edmonds TG, Ding H, Keele BF, Decker J, Salazar MG, et al. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4

T lymphocytes and monocyte-derived macrophages. J Virol. 2012; 86(5):2715–28. Epub 2011/12/23.

https://doi.org/10.1128/JVI.06157-11 PMID: 22190722; PubMed Central PMCID: PMC3302286.

96.

Carlson LA, de Marco A, Oberwinkler H, Habermann A, Briggs JA, Krausslich HG, et al. Cryo electron

tomography of native HIV-1 budding sites. PLoS Pathog. 2010; 6(11):e1001173. Epub 2010/12/03.

https://doi.org/10.1371/journal.ppat.1001173 PMID: 21124872; PubMed Central PMCID:

PMC2991257.

97.

Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, et al. The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol. 2004; 11(7):672–5. Epub 2004/06/23. https://doi.org/10.1038/

nsmb785 PMID: 15208690.

98.

Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. Development of a self-inactivating lentivirus

vector. J Virol. 1998; 72(10):8150–7. Epub 1998/09/12. PubMed Central PMCID: PMC110156. https://

doi.org/10.1128/JVI.72.10.8150-8157.1998 PMID: 9733856

99.

Richardson RB, Ohlson MB, Eitson JL, Kumar A, McDougal MB, Boys IN, et al. A CRISPR screen

identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat Microbiol.

2018; 3(11):1214–23. Epub 2018/09/19. https://doi.org/10.1038/s41564-018-0244-1 PMID:

30224801; PubMed Central PMCID: PMC6202210.

100.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):R36.

Epub 2013/04/27. https://doi.org/10.1186/gb-2013-14-4-r36 PMID: 23618408; PubMed Central

PMCID: PMC4053844.

101.

Love MI, Huber W, ...

参考文献をもっと見る