リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Construction and evaluation of a self-replicative RNA vaccine against SARS-CoV-2 using yellow fever virus replicon」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Construction and evaluation of a self-replicative RNA vaccine against SARS-CoV-2 using yellow fever virus replicon

Nakamura, Akina Kotaki, Tomohiro Nagai, Yurie Takazawa, Shunta Tokunaga, Kenzo Kameoka, Masanori 神戸大学

2022.10.22

概要

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global threat. To forestall the pandemic, developing safe and effective vaccines is necessary. Because of the rapid production and little effect on the host genome, mRNA vaccines are attractive, but they have a relatively low immune response after a single dose. Replicon RNA (repRNA) is a promising vaccine platform for safety and efficacy. RepRNA vaccine encodes not only antigen genes but also the genes necessary for RNA replication. Thus, repRNA is self-replicative and can play the role of an adjuvant by itself, which elicits robust immunity. This study constructed and evaluated a repRNA vaccine in which the gene encoding the spike (S) protein of SARS-CoV-2 was inserted into a replicon of yellow fever virus 17D strain. Upon electroporation of this repRNA into baby hamster kidney cells, the S protein and yellow fever virus protein were co-expressed. Additionally, the self-replication ability of repRNA vaccine was confirmed using qRT-PCR, demonstrating its potency as a vaccine. Immunization of C57BL/6 mice with 1 μg of the repRNA vaccine induced specific T-cell responses but not antibody responses. Notably, the T-cell response induced by the repRNA vaccine was significantly higher than that induced by the nonreplicative RNA vaccine in our experimental model. In the future, it is of the essence to optimize vaccine administration methods and improve S protein expression, like protection of repRNA by nanoparticles and evasion of innate immunity of the host to enhance the immune-inducing ability of the repRNA vaccine.

この論文で使われている画像

関連論文

参考文献

1. Erasmus JH, Khandhar AP, O’Connor MA, Walls AC, Hemann EA, Murapa P, et al. An Alphavirus- derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci Transl Med. 2020; 12: 9396.

2. Long B, Carius BM, Chavez S, Liang SY, Brady WJ, Koyfman A, et al. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am J Emerg Med. 2022; 54:46–57. https://doi. org/10.1016/j.ajem.2022.01.028 PMID: 35121478

3. SeyedAlinaghi S, Abbasian L, Solduzian M, Ayoobi Yazdi N, Jafari F, Adibimehr A, et al. Predictors of the prolonged recovery period in COVID-19 patients: a cross-sectional study. Eur J Med Res. 2021; 26:41. https://doi.org/10.1186/s40001-021-00513-x PMID: 33957992

4. Duan R, Mao Q, Ding X, Qiu Q, Wang P. Immunologic features of asymptomatic postvaccination infec- tions with the Delta variant of SARS-CoV-2 in adults. Immun Inflamm Dis. 2022; 10:e670. https://doi. org/10.1002/iid3.670 PMID: 35759224

5. Poland GA, Ovsyannikova IG, Crooke SN, Kennedy RB. SARS-CoV-2 vaccine development: current status. Mayo Clin Proc. 2020; 95: 2172–2188. https://doi.org/10.1016/j.mayocp.2020.07.021 PMID: 33012348

6. Chenchula S, Karunakaran P, Sharma S, Chavan M. Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J Med Virol. 2022; 94:2969–2976. https://doi.org/10.1002/jmv.27697 PMID: 35246846

7. Alderson J, Batchelor V, O’Hanlon M, Cifuentes L, Richter FC, Kopycinski J; Oxford-Cardiff COVID-19 Literature Consortium. Overview of approved and upcoming vaccines for SARS-CoV-2: a living review. Oxf Open Immunol. 2021; 5: iqab010. https://doi.org/10.1093/oxfimm/iqab010 PMID: 34522886

8. Desai D, Khan AR, Soneja M, Mittal A, Naik S, Kodan P, et al. Effectiveness of an inactivated virus- based SARS-CoV-2 vaccine, BBV152, in India: a test-negative, case-control study. Lancet Infect Dis. 2022: 3; 349–356. https://doi.org/10.1016/S1473-3099(21)00674-5 PMID: 34826383

9. Park JW, Lagniton PN, Liu Y, Xu RH. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci. 2021; 17: 1446–1460. https://doi.org/10.7150/ijbs.59233 PMID: 33907508

10. Abdelzaher HM, Gabr AS, Saleh BM, Abdel Gawad RM, Nour AA, Abdelanser A. RNA vaccines against infectious diseases: vital progress with room for improvement. Vaccines (Basel). 2021; 9: 1211. https:// doi.org/10.3390/vaccines9111211 PMID: 34835142

11. Gutie´rrez-A´ lvarez J, Honrubia JM, Sanz-Bravo A, Gonza´lez-Miranda E, Ferna´ndez-Delgado R, Rejas MT, et al. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proc Natl Acad Sci U S A. 2021; 118: e2111075118. https://doi.org/10.1073/pnas.2111075118 PMID: 34686605

12. Johansson DX, Ljungberg K, Kakoulidou M, Liljestro¨ m P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One. 2012; 7: e29732. https://doi.org/10.1371/journal. pone.0029732 PMID: 22238645

13. Carroll TD, Matzinger SR, Barro M, Fritts L, McChesney MB, Miller CJ, et al. Alphavirus replicon-based adjuvants enhance the immunogenicity and effectiveness of Fluzone® in rhesus macaques. Vaccine. 2011; 29: 931–940.

14. Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P, et al. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volun- teers. Vaccine. 2009; 28: 484–493. https://doi.org/10.1016/j.vaccine.2009.09.135 PMID: 19857446

15. Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther. 2018; 26: 446–455. https://doi.org/10.1016/j.ymthe.2017.11.017 PMID: 29275847

16. Barrett AD, Teuwen DE. Yellow fever vaccine—how does it work and why do rare cases of serious adverse events take place? Curr Opin Immunol. 2009; 21: 308–313. https://doi.org/10.1016/j.coi.2009. 05.018 PMID: 19520559

17. Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Micro- biol. 2010; 8: 62–73. https://doi.org/10.1038/nrmicro2240 PMID: 19966816

18. Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, et al. Enhanced isolation of SARS- CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020; 117: 7001–7003. https://doi. org/10.1073/pnas.2002589117 PMID: 32165541

19. Charlier N, Davidson A, Dallmeier K, Molenkamp R, De Clercq E, Neyts J. Replication of not-known- vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. J Gen Virol. 2010; 91: 1693–1697. https://doi.org/10.1099/vir.0.019851-0 PMID: 20219898

20. Kotaki T, Kurosu T, Grinyo-Escuer A, Davidson E, Churrotin S, Okabayashi T, et al. An affinity- matured human monoclonal antibody targeting fusion loop epitope of dengue virus with in vivo thera- peutic potency. Sci Rep. 2021; 11: 12987. https://doi.org/10.1038/s41598-021-92403-9 PMID: 34155267

21. Isawa H, Kuwata R, Tajima S, Hoshino K, Sasaki T, Takasaki T, et al. Construction of an infectious cDNA clone of Culex flavivirus, an insect-specific flavivirus from Culex mosquitoes. Arch Virol. 2012; 157: 975–979. https://doi.org/10.1007/s00705-012-1240-z PMID: 22297417

22. Kato F, Tajima S, Nakayama E, Kawai Y, Taniguchi S, Shibasaki K, et al. Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016. Sci Rep. 2017; 7: 16160. https://doi.org/10.1038/s41598-017-16475-2 PMID: 29170504

23. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An Mrna vaccine against SARS-Cov-2—preliminary report. N Engl J Med. 2020; 383: 1920–1931. https://doi.org/10. 1056/NEJMoa2022483 PMID: 32663912

24. Hoffmann M, Kleine-Weber H, Po¨ hlmann S. A multibasic cleavage site in the spike protein of SARS- Cov-2 is essential for infection of human lung cells. Mol Cell. 2020; 78: 779–784. https://doi.org/10. 1016/j.molcel.2020.04.022 PMID: 32362314

25. Xie X, Muruato A, Lokugamage KG, Narayanan K, Zhang X, Zou J, et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe. 2020; 27: 841–848. https://doi.org/10.1016/j.chom.2020.04.004 PMID: 32289263

26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012; 9: 676–682. https://doi.org/10.1038/ nmeth.2019 PMID: 22743772

27. Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun. 2021; 12: 848. https:// doi.org/10.1038/s41467-021-21118-2 PMID: 33558493

28. Meng B, Kemp SA, Papa G, Datir R, Ferreira IATM, Marelli S, et al. Recurrent emergence of SARS- CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021; 35: 109292. https://doi.org/10.1016/j.celrep.2021.109292 PMID: 34166617

29. Lundstrom K. Self-replicating RNA viruses for RNA therapeutics. Molecules. 2018; 23: 3310. https://doi.org/10.3390/molecules23123310 PMID: 30551668

30. Hussain S, Rasool ST, Pottathil S. The evolution of severe acute respiratory syndrome coronavirus-2 during pandemic and adaptation to the host. J Mol Evol. 2021; 89: 341–356. https://doi.org/10.1007/ s00239-021-10008-2 PMID: 33993372

31. Lu J, Lu G, Tan S, Xia J, Xiong H, Yu X, et al. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a strong antiviral-like immune response in mice. Cell Res. 2020; 30: 936– 939. https://doi.org/10.1038/s41422-020-00392-7 PMID: 32801356

32. De´moulins T, Ruggli N, Gerber M, Thomann-Harwood LJ, Ebensen T, Schulze K, et al. Self-amplifying pestivirus replicon RNA encoding influenza virus nucleoprotein and hemagglutinin promote humoral and cellular immune responses in pigs. Front Immunol. 2021; 11: 622385. https://doi.org/10.3389/ fimmu.2020.622385 PMID: 33584723

33. Pepini T, Pulichino AM, Carsillo T, Carlson AL, Sari-Sarraf F, Ramsauer K, et al. Induction of an IFN- mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J Immu- nol. 2017; 198: 4012–4024. https://doi.org/10.4049/jimmunol.1601877 PMID: 28416600

34. Zhong Z, Portela Catani JP, Mc Cafferty S, Couck L, Van Den Broeck W, Gorle´ N, et al. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based zika virus vaccine. Vaccines (Basel). 2019; 7: 96. https://doi.org/10.3390/vaccines7030096 PMID: 31450775

35. Cagigi A, Lore´ K. Immune responses induced by mRNA vaccination in mice, monkeys and humans. Vaccines (Basel). 2021; 9: 61. https://doi.org/10.3390/vaccines9010061 PMID: 33477534

36. Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol. 2007; 81: 3087–3096. https://doi.org/10.1128/JVI.02032-06 PMID: 17215286

37. Kariko´ K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological sta- bility. Mol Ther. 2008; 16: 1833–1840. https://doi.org/10.1038/mt.2008.200 PMID: 18797453

38. Huang S, Zhang W, Katanski CD, Dersh D, Dai Q, Lolans K, et al. Interferon inducible pseudouridine modification in human mRNA by quantitative nanopore profiling. Genome Biol. 2021; 22: 330. https:// doi.org/10.1186/s13059-021-02557-y PMID: 34872593

39. Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011; 186: 7264–7268. https://doi.org/10.4049/jimmunol.0903490 PMID: 21576510

40. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T-cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020; 181: 1489–1501.e15. https://doi.org/10.1016/j.cell.2020.05.015 PMID: 32473127

41. Li P, Luo Z, Liu P, Gao N, Zhang Y, Pan H, et al. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release. 2013; 168: 271–279.

42. Drake JR. Signaling cross-talk between MHC Class II molecular conformers in resting murine B cells. Immunohorizons. 2019; 3: 28–36. https://doi.org/10.4049/immunohorizons.1800078 PMID: 31356174

43. Zhang YN, Li XD, Zhang ZR, Zhang HQ, Li N, Liu J, et al. A mouse model for SARS-CoV-2 infection by exogenous delivery of hACE2 using alphavirus replicon particles. Cell Res. 2020; 30: 1046–1048. https://doi.org/10.1038/s41422-020-00405-5 PMID: 32843719

44. Ricardo-Lax I, Luna JM, Thao TTN, Le Pen J, Yu Y, Hoffmann HH, et al. Replication and single-cycle delivery of SARS-CoV-2 replicons. Science. 2021; 374: 1099–1106. https://doi.org/10.1126/science. abj8430 PMID: 34648371

45. Otsuki K, Maeda J, Yamamoto H, Tsubokura M. Studies on avian infectious bronchitis virus (IBV). III. Interferon induction by and sensitivity to interferon of IBV. Arch Virol. 1979; 60: 249–255. https://doi.org/ 10.1007/BF01317496 PMID: 228636

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る