リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on Self-assembly and Homochiral Self-sorting Processes of Pd(II)-linked Coordination Assemblies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on Self-assembly and Homochiral Self-sorting Processes of Pd(II)-linked Coordination Assemblies

甲斐, 詢平 東京大学 DOI:10.15083/0002002082

2021.10.04

概要

In this thesis, the author revealed the self-assembly and chiral self-sorting processes of a variety of Pd(II)-linked complexes by QASAP (quantitative analysis of self-assembly process), which enables us to investigate the self-assembly process without the direct observation of intermediates. Although the most straightforward way to investigate the self-assembly process is the investigation of the time variation and quantification of all the intermediates in self-assembly process, it is impossible due to the technical difficulties. The author is able to discuss the self-assembly and homochiral self-sorting processes because QASAP allows us to obtain the average composition of all the intermediates from the mass balance between reactants and products.

The author sometimes directly observed the intermediates however it was not always a major intermediate species to form the thermodynamically most stable complexes. These results indicated that the investigation of both observable and not observable intermediates was always required and the analysis of both intermediates by QASAP enabled us to deeply understand self-assembly mechanisms. The author found that the self-assembly process was affected by various factors such as the flexibility of ligand, the panel-panel interaction of ligand, the chirality of ligand, the geometry of final assembled complex, and the existence of kinetically trapped species, and that self-assembled complexes are formed through multiple pathways.

Kinetically produced discrete structures with leaving ligands such as incomplete cage are promising precursors for further molecular self-assembly to produce multicomponent self-assemblies under kinetic control. Selection and/or amplification of desired kinetic species based on the self-assembly process is one of the future directions in artificial molecular self-assembly.

Although some self-assembly processes have investigated, a certain trend has already become clear. More investigation of the self-assembly processes of Pd(II)-linked discrete coordination self-assemblies by QASAP will allow us to establish general principles of self-assembly processes.

参考文献

Chapter 1

(1) Pedersen, C. J. J. Am.Chem. Soc. 1967, 89, 2495–2496.

(2) Lehn. J.-M.; Supramolecular Chemistry: Concepts and Perspectives, Wiley-VCH, Weinheim,1995.

(3) Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, Chichester, 2000.

(4) Ogino, H. J. Am. Chem. Soc., 1981, 103, 1303–1304.

(5) Lehn, J.-M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. Proc. Natl. Acad. Sci. U.S.A., 1987, 84, 2565–2569.

(6) Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc., 1990, 112, 5645–5647.

(7) Fujita, M.; Yazaki, J.; Ogura, K. Tetrahedron Lett., 1991, 32, 5589–5592.

(8) Fujita, M. Chem. Soc. Rev., 1998, 27, 417-425.

(9) Conn, M. M.; Rebek, Jr, J. Chem. Rev., 1997, 97, 1647-1668.

(10) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res., 1999, 32, 975-982.

(11) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369–378.

(12) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P. J. Acc. Chem. Res. 2009, 42, 1554–1563.

(13) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev., 2011, 111, 6810–6918.

(14) Yoshizawa, M.; Tamura, M. ; Fujita, M. Science, 2006, 312, 251–254.

(15) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem. Int. Ed., 2009, 48, 3418–3438.

(16) Horiuchi, S.; Murase, T.; Fujita, M. Angew. Chem. Int. Ed., 2012, 51, 12029–12031.

(17) Leopold, P. E.; Montal, M.; Onuchic, J. N. Proc. Natl. Acad. Sci. USA 1992, 89, 8721–8725.

(18) Plotkin, S. S.; Onuchic, J. N. Rev. Biophys. 2002, 35, 111– 167.

(19) Karplus, M. Nat. Chem. Biol. 2011, 7, 401–404.

(20) Englander, S. W.; Mayne, L. Proc. Natl. Acad. Sci. USA 2014, 111, 15873–15880.

(21) Finkelstein, A. V.; Ptitsyn, O. Protein Physics: A Course of Lectures (Soft Condensed Matter, Complex Fluids and Biomaterials); Elsevier Science: Amsterdam, The Netherlands, 2016.

(22) Schalley, C. A.; Müller, T.; Linnartz, P.; Witt, M.; Schäfer, M.; Lützen, A. Chem. Eur. J. 2002, 8, 3538–3551.

(23) Brusilowskij, B.; Neubacher, S.; Schalley, C. A. Chem. Comm. 2009, 785-787.

(24) Fujita, D.; Yokoyama, H.; Ueda, Y.; Sato, S.; Fujita, M. Angew. Chem. Int. Ed. 2014, 53, 7228-7232.

(25) Barboiu, M.; Vaughan, G.; Graff, R.; Lehn, J.-M. J. Am. Chem. Soc. 2003, 125, 10257–10265.

(26) Prakasam, T.; Lusi, M.; Elhabiri, M.; Platas-Iglesias, C.; Olsen, J.-C.; Asfari, Z.;Cianférani-Sanglier, S.; Debaene, F.; Charbonnière, L. J.; Trabolsi, A. Angew. Chem. Int. Ed.2013, 52, 9956-9960.

(27) Hiraoka, S. Bull. Chem. Soc. Jpn. 2018, 91, 957–978.

(28) Hiraoka S. Israel. J. Chem. 2018, 58, 1–16.

(29) Hiraoka, S. Chem. Rec. 2015, 15, 1144–1147.

Chapter 2

(1) Liao, P.; Langloss, B. W.; Johnson, A. M.; Knudsen, E. R.; Tham, F. S.; Julian, R. R.; Hooley, R.J. Chem. Commun. 2010, 46, 4932–4934.

(2) Schmidt, A.; Casini, A.; Kühn, F. E. Coord. Chem. Rev. 2014, 275, 19–36.

(3) Han, M.; Engelhard, D. M.; Clever, G. H. Chem. Soc. Rev. 2014, 43, 1848–1860.

(4) McMorran, D. A.; Steel, P. J. Angew. Chem. Int. Ed. 1998, 37, 3295–3297.

(5) Chand, D. K.; Biradha, K.; Fujita, M. Chem. Commun. 2001, 1652–1653.

(6) Chand, D. K.; Fujita, M.; Biradha, K.; Sakamoto, S.; Yamaguchi, K. Dalton Trans. 2003, 2750– 2756.

(7) Liu, H.-K.; Hu, J.; Wang, T.-W.; Yu, X.-L.; Liu, J.; Kang, B. Chem. Soc. Dalton Trans. 2001, 3534–3540.

(8) Yue, N. L. S.; Eisler, D. J.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2004, 43, 7671– 7681.

(9) Fukuda, M.; Sekiya, R.; Kuroda, R. Angew. Chem. Int. Ed. 2008, 47, 706–710.

(10) Sekiya, R.; Kuroda, R. Chem. Commun. 2011, 47, 12346–12348.

(11) Sekiya, R.; Fukuda, M.; Kuroda, R. J. Am. Chem. Soc. 2012, 134, 10987–10997.

(12) Johnson, A. M.; Hooley, R. J. Inorg. Chem. 2011, 50, 4671–4673.

(13) Johnson, A. M.; Moshe, O.; Gamboa, A. S.; Langloss, B. W.; Limtiaco, J. F. K.; Larive, C. K.; Hooley, R. J. Inorg. Chem. 2011, 50, 9430–9442.

(14) Sahoo, H. S.; Chand, D. K. Dalton Trans. 2010, 39, 7223–7225.

(15) Tripathy, D.; Pal, A. K.; Hanan, G. S.; Chand, D. K. Dalton Trans. 2012, 41, 11273–11275.

(16) Kishi, N.; Li, Z.; Yoza, K.; Akita, M.; Yoshizawa, M. J. Am. Chem. Soc. 2011, 133, 11438– 11441.

(17) Kishi, N.; Li, Z.; Sei, Y.; Akita, M.; Yoza, K.; Siegel, J. S.; Yoshizawa, M. Chem. Eur. J. 2013,19, 6313–6320.

(18) Yamashina, M.; Yuki, T.; Sei, Y.; Akita, M.; Yoshizawa, M. Chem. Eur. J. 2015, 21, 4200– 4204.

(19) Yazaki, K.; Noda, S.; Tanaka, Y.; Sei, Y.; Akita, M.; Yoshizawa, M. Angew. Chem. Int. Ed.2016, 55, 15031–15034.

(20) Lewis, J. E. M.; Gavey, E. L.; Cameron, S. A.; Crowley, J. D. Chem. Sci. 2012, 3, 778–784.

(21) Lewis, J. E. M.; McAdam, C. J.; Gradiner, M. G.; Crowley, J. D. Chem. Commun. 2013, 49, 3398–3400.

(22) Lewis, J. E. M.; Elliott, A. B. S.; McAdam, C. J.; Gordon, K. C.; Crowley, J. D. Chem. Sci. 2014,5, 1833–1843.

(23) Preston, D.; Fox-Charles, A.; Lo, W. K. C.; Crowley, J. D. Chem. Commun. 2015, 51, 9042– 9045.

(24) Preston, D.; Barnsley, J. E.; Gordon, K. C.; Crowley, J. D. J. Am. Chem. Soc. 2016, 138, 10578– 10585.

(25) Wei, S.-C.; Pan, M.; Fan, Y.-Z.; Liu, H.; Zhang, J.; Su, C.-Y. Chem. Eur. J. 2015, 21, 7418– 7427.

(26) Clever, G. H.; Tashiro, S.; Shionoya, M. Angew. Chem. Int. Ed. 2009, 48, 7010–7012.

(27) Clever, G. H.; Kawamura, W.; Tashiro, S.; Shiro, M.; Shionoya, M. Angew. Chem. Int. Ed. 2012,51, 2606–2609.

(28) Freye, S.; Hey, J.; Torras-Galµn, A.; Stalke, D.; Herbst-Irmer, R.; John, M.; Clever, G. H. Angew. Chem. Int. Ed. 2012, 51, 2191–2194.

(29) Han, M.; Michel, R.; He, B.; Chen, Y.-S.; Stalke, D.; John, M.; Clever, G. H. Angew. Chem. Int. Ed. 2013, 52, 1319–1323.

(30) Frank, M.; Hey, J.; Balcioglu, I.; Chen, Y.-S.; Stalke, D.; Suenobu, T.; Fukuzumi, S.; Frauendorf, H.; Clever, G. H. Angew. Chem. Int. Ed. 2013, 52, 10102–10106.

(31) Zhu, R.; Lübben, J.; Dittrich, B.; Clever, G. H. Angew. Chem. Int. Ed. 2015, 54, 2796–2800.

(32) Löffler, S.; Lübben, J.; Krause, L.; Stalke, D.; Dittrich, B.; Clever, G. H. Clever, J. Am. Chem. Soc. 2015, 137, 1060–1063.

(33) Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2016, 138, 13750–13755.

(34) Schmidt, A.; Molano, V.; Hollering, M.; Pöthig, A.; Casini, A.; Kühn, F. E. Chem. Eur. J. 2016,22, 2253–2256.

(35) Jansze, S. M.; Wise, M. D.; Vologzhanina, A. V.; Scopelliti, R.; Severin, K. Chem. Sci. 2017, 8, 1901–1908.

(36) Frank, M.; Johnstone, M. D.; Clever, G. H. Chem. Eur. J., 2016, 22, 14104–14125.

(37) Clever, G. H.; Punt, P. Acc. Chem. Res., 2017, 50, 2233–2243

(38) Vasdev, R. A. S.; Preston, D.; Crowley, J. M. Chem. Asian J., 2017, 12, 2513–2523.

(39) August, D. P.; Nichol, G. S.; Lusby, P. J. Angew. Chem. Int. Ed., 2016, 55, 15022–15026.

(40) Preston, D.; Lewis, J. E. M.; Crowley, J. M. J. Am. Chem. Soc., 2017, 139, 2379–2386.

(41) Frank, M.; Ahrens, J.; Bejenke, I.; Krick, M.; Schwarzer, D.; Clever, G. H. J. Am. Chem. Soc.,2016, 138, 8279–8287.

(42) Bloch, W. M.; Holstein, J. J.; Hiller, W.; Clever, G. H. Angew. Chem. Int. Ed., 2017, 56, 8285– 8289.

(43) Yazaki, K.; Sei, Y.; Akita, M.; Yoshizawa, M. Chem. Eur. J., 2016, 22, 17557–17561.

(44) Matsuno, S.; Yamashina, M.; Sei, Y.; Akita, M.; Kuzume, A.; Yamamoto, K.; Yoshizawa, M.Nat. Commun., 2017, 8, 749.

(45) Yazaki, K.; Akita, M.; Prusty, S.; Chand, D. K.; Kikuchi, T.; Sato, H.; Yoshizawa, M. Nat. Commun., 2017, 8, 15914.

(46) Basolo, F.; Pearson, R. G. Mechanisms of inorganic reactions; Wiley: New York, 1967.

(47) Canovese, L.; Cattalini, L.; Uguagliati, P.; Tobe, M. L. J. Chem. Soc. Dalton Trans. 1990, 867– 872.

(48) Burdett, J. K. Inorg. Chem. 1977, 16, 3013–3025.

(49) Frisch, M. J. F.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford CT, 2010.

(50) Matsumura, Y.; Hiraoka, S.; Sato, H. Phys. Chem. Chem. Phys. 2017, 19, 20338–20342.

(51) Schultheiss, N.; Ellsworth, J. M.; Bosch, E.; Barnes, C. L. Eur. J. Inorg. Chem. 2005, 45–46.

(52) Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1–25. URL http://www.jstatsoft.org/v33/i09/ DOI 10.18637/jss.v033.i09 [Accessed 31st July 2017]

(53) R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [Accessed 31st July 2017]

(54) Studio Team (2015). RStudio: Integrated Development for R, version 0.99.892. RStudio, Inc., Boston, MA URL http://www.rstudio.com/. [Accessed 31st July 2017]

(55) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev., 2008, 252, 825–841.

(56) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev., 2011, 111, 6810–6918.

(57) Amouri, H.; Desmarets, C.; Moussa, J. Chem. Rev., 2012, 112, 2015–2041.

(58) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev., 2013, 113, 734–777.

(59) Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R. Chem. Soc. Rev., 2013, 42, 1728– 1754.

(60) Cook, T. R.; Stang, P. J. Chem. Rev., 2015, 115, 7001–7045.

(61) Wang, W.; Wang, Y.-X.; Yang, H.-B. Chem. Soc. Rev., 2016, 45, 2656–2693.

(62) Yoshizawa, M.; Kusukawa, T.; Fujita, M.; Yamaguchi, K. J. Am. Chem. Soc., 2000, 122, 6311– 6312.

(63) Dong, V. M.; Fiedler, D.; Carl, B.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc., 2006,128, 14464–14465.

(64) Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science, 2009, 324, 1697–1699.

(65) Mondal, B.; Acharyya, K.; Howlader, P.; Mukherjee, P. S. J. Am. Chem. Soc., 2016, 138, 1709−1716.

(66) Yoshizawa, M.; Tamura, M.; Fujita, M. Science, 2006, 312, 251–254.

(67) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem. Int. Ed., 2009, 48, 3418–3438.

(68) Horiuchi, S.; Murase, T.; Fujita, M. Angew. Chem. Int. Ed., 2012, 51, 12029–12031.

(69) Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev., 2015, 115, 3012–3035.

(70) Zhao, C.; Toste, F. D.; Raymond, K. N.; Bergman, R. G. J. Am. Chem. Soc., 2014, 136, 14409– 14412.

(71) Murase, T.; Nishijima, Y.; Fujita, M. J. Am. Chem. Soc., 2012, 134, 162–164.

(72) Bolliger, J. L.; Belenguer, A. M.; Nitschke, J. R. Angew. Chem. Int. Ed., 2013, 52, 7958–7962.

(73) Wang, Q.-Q.; Gonell, S.; Leenders, S. H. A. M.; Dürr, M.; Ivanović-Burmazović, I.; Reek, J. N.H. Nat. Chem., 2016, 8, 225–230.

(74) Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M. D. Nat. Chem., 2016, 8, 231–236.

(75) Roverts, D. A.; Castilla, A. M.; Ronson, T. K.; Nitshcke, J. R. J. Am. Chem. Soc., 2014, 136, 8201–8204.

(76) Fujita, D.; Yokoyama, H.; Ueda, Y.; Sato, S.; Fujita, M. Angew. Chem. Int. Ed., 2015, 54, 155– 158.

(77) Burke, M. J.; Nichol, G. S.; Lusby, P. J. J. Am Chem. Soc., 2016, 138, 9308–9315.

(78) Tashiro, S.; Tominaga, M.; Kusukawa, T.; Kawano, M.; Sakamoto, S.; Yamaguchi, K.; Fujita, M.Angew. Chem. Int. Ed., 2003, 42, 3267–3270.

(79) Li, Y.; Jiang, Z.; Yuan, J.; Liu, D.; Wu, T.; Moorefield, C. N.; Newcome, G. R.; Wang, P. Chem. Commun., 2015, 51, 5766–5769.

(80) Preston, D.; Barnsley, J. E.; Gordon, K. C.; Crowley, J. D. J. Am. Chem. Soc., 2016, 138, 10578–10585.

(81) Marquis-RIgault, A.; Dupont-Gervais, A.; Van Dorsselaer, A.; Lehn, J.-M. Chem. Eur. J., 1996,2, 1395–1398.

(82) Schalley, C. A.; Müller, T.; Linnartz, P.; Witt, M.; Schäfer, M.; Lützen, A. Chem. Eur. J., 2002,8, 3538–3551.

(83) Brusilowskij, B.; Neubacher, S.; Schalley, C. A. Chem. Commun., 2009, 785–787.

(84) Changelosi, V. M.; Carter, T. G.; Zakharov, L. N.; Johnson, D. W. Chem. Commun., 2009, 5606–5608.

(85) Wiley, C. A.; Holloway, L. R.; Miller, T. F.; Lyon, Y.; Julian, R. R.; Hooley, R. J. Inorg. Chem.,2016, 55, 9805–9815.

(86) Holloway, L. R.; McGarraugh, H. H.; Young, M. C.; Sontising, W.; Beran, G. J. O.; Hooley, R. J.Chem. Sci., 2016, 7, 4423–4427.

(87) Bilbeisi, R. A.; Prakasam, T.; Lusi, M.; Khoury, R. E.; Platas-Iglesias, C.; Charbonniere, L. J.; Olsen, J.-C.; Elhabiri, M.; Trabolsi, A. Chem. Sci., 2016, 7, 2524–2531.

(88) Wang, X.; Wicher, B.; Ferrand, Y.; Huc, I. J. Am. Chem. Soc., 2017, 139, 9350–9358.

(89) Jiang, W.; Schäfer, A.; Mohr, P. C.; Schalley, C. A. J. Am. Chem. Soc., 2017, 132, 2309–2320.

(90) Wang, Q.; Chang, C.; Noll, B. C.; Long, H.; Jin, Y.; Zhang, W. Angew. Chem. Int. Ed., 2014, 53, 10663–10667.

(91) Wang, Q.; Yu, C.; Zhang, C.; Long, H.; Azarnoush, S.; Jin, Y.; Zhang, W. Chem. Sci., 2016, 7, 3370–3376.

(92) Elliot, E. L.; Hartley, C. S.; Moore, J. S. Chem. Commun., 2011, 47, 5028–5030.

(93) Komaromy, D.; Stuart, M. C. A.; Santiago, G. M.; Tezcan, M.; Krasnikov, V. V.; Otto, S. J. Am. Chem. Soc., 2017, 139, 6234–6241.

(94) Altay, Y.; Tezcan, M.; Otto, S. J. Am. Chem. Soc., 2017, 139, 13612–13615.

(95) McMorran, D. A.; Steel, P. J. Angew. Chem. Int. Ed., 1998, 37, 3295–3297.

(96) Schmidt, A.; Casini, A.; Kühn, F. E. Coord. Chem. Rev., 2014, 275, 19–36.

(97) Han, M.; Engelhard, D. M.; Clever, G. H. Chem. Soc. Rev., 2014, 43, 1848–1860.

(98) Frank, M.; Johnstone, M. D.; Clever, G. H. Chem. Eur. J., 2016, 22, 14104–14125.

(99) Clever, G. H.; Punt, P. Acc. Chem. Res., 2017, 50, 2233–2243

(100) Vasdev, R. A. S.; Preston, D.; Crowley, J. M. Chem. Asian J., 2017, 12, 2513–2523.

(101) Yamashina, M.; Yuki, T.; Sei, Y.; Akita, M.; Yoshizawa, M. Chem. Eur. J., 2015, 21, 4200– 4204.

(102) Yazaki, K.; Noda, S.; Tanaka, Y.; Sei, Y.; Akita, M.; Yoshizawa, M. Angew. Chem. Int. Ed.,2016, 55, 15031–15034.

(103) Lewis, J. E. M.; Elliott, A. B. S.; McAdam, C. J.; Gordon, K. C.; Crowley, J. D. Chem. Sci.,2014, 5, 1833–1843.

(104) Preston, D.; Fox-Charles, A.; Lo, W. K. C.; Crowley, J. D. Chem. Commun., 2015, 51, 9042– 9045.

(105) Preston, D.; Barnsley, J. E.; Gordon, K. C.; Crowley, J. D. J. Am. Chem. Soc., 2016, 138, 10578–10585.

(106) Wei, S.-C.; Pan, M.; Fan, Y.-Z.; Liu, H.; Zhang, J.; Su, C.-Y. Chem. Eur. J., 2015, 21, 7418– 7427.

(107) Zhu, R.; Lübben, J.; Dittrich, B.; Clever, G. H. Angew. Chem. Int. Ed., 2015, 54, 2796–2800.

(108) Löffler, S.; Lübben, J.; Krause, L.; Stalke, D.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc.,2015, 137, 1060–1063.

(109) Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc., 2016, 138, 13750–13755.

(110) Schmidt, A.; Molano, V.; Hollering, M.; Pöthig, A.; Casini, A.; Kühn, F. E. Chem. Eur. J.,2016, 22, 2253–2256.

(111) Jansze, S. M.; Wise, M. D.; Vologzhanina, A. V.; Scopelliti, R.; Severin, K. Chem. Sci., 2017, 8, 1901–1908.

(112) August, D. P.; Nichol, G. S.; Lusby, P. J. Angew. Chem. Int. Ed., 2016, 55, 15022–15026.

(113) Preston, D.; Lewis, J. E. M.; Crowley, J. M. J. Am. Chem. Soc., 2017, 139, 2379–2386.

(114) Frank, M.; Ahrens, J.; Bejenke, I.; Krick, M.; Schwarzer, D.; Clever, G. H. J. Am. Chem. Soc.,2016, 138, 8279–8287.

(115) Bloch, W. M.; Holstein, J. J.; Hiller, W.; Clever, G. H. Angew. Chem. Int. Ed., 2017, 56, 8285– 8289.

(116) Yazaki, K.; Sei, Y.; Akita, M.; Yoshizawa, M. Chem. Eur. J., 2016, 22, 17557–17561.

(117) Yazaki, K.; Noda, S.; Tanaka, Y.; Sei, Y.; Akita, M. Yoshizawa, M. Angew. Chem. Int. Ed.,2016, 55, 15031–15034.

(118) Matsuno, S.; Yamashina, M.; Sei, Y.; Akita, M.; Kuzume, A.; Yamamoto, K.; Yoshizawa, M.Nat. Commun., 2017, 8, 749.

(119) Yazaki, K.; Akita, M.; Prusty, S.; Chand, D. K.; Kikuchi, T.; Sato, H.; Yoshizawa, M. Nat. Commun., 2017, 8, 15914.

(120) Brusilowskij, B.; Dzyuba, E. V.; Troff, R. W.; Schalley, C. A. Dalton Trans., 2011, 40, 12089– 12096.

(121) Basolo, F.; Pearson, R. G. Mechanisms of inorganic reactions; Wiley: New York, 1967.

(122) Canovese, L.; Cattalini, L.; Uguagliati, P.; Tobe, M. L. J. Chem. Soc. Dalton Trans., 1990, 867–872.

(123) Burdett, J. K. Inorg. Chem., 1977, 16, 3013–3025.

(124) Marquis-Rigault, A.; Dupont-Gervais, A.; Dorsselaer, A. V.; Lehn, J.-M. Chem. Eur. J. 1996, 2, 1395-1398.

(125) Fujita, D.; Yokoyama, H.; Ueda, Y.; Sato, S.; Fujita, M. Angew. Chem. Int. Ed., 2015, 54, 155– 158.

(126) Yoneya, M.; Yamaguchi, T.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2012, 134, 14401-14407.

(127) Yoneya, M.; Tsuzuki, S.; Yamaguchi, T.; Sato, S.; Fujita, M. ACS Nano, 2014, 8, 1290-1296.

(128) Matsumura, Y.; Hiraoka, S.; Sato, H. Phys. Chem. Chem. Phys. 2017, 19, 20338-20342.

(129) Brusilowskij, B.; Dzyuba, E. V.; Troff, R. W.; Schalley, C. A. Dalton Trans. 2011, 40, 12089-12096.

(130) Brusilowskij, B.; Neubacher, S.; Schalley, C. A. Chem. Commun. 2009, 785-787.

(131) Li, Y.; Jiang, Z.; Yuan, J.; Liu, D.; Wu, T.; Moorefield, C. N.; Newkome, G. R.; Wang, P.Chem. Commun. 2015, 51, 5766-5769.

(132) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang P. J. Acc. Chem Res. 2009, 42, 1554–1563.

(133) Zhao, L.; Northrop, B. H.; Zheng, Y.-R.; Yang, H.-B.; Lee, H. J.; Lee, Y. M.; Park, J. Y.; Chi, K.-W.; Stang, P. J. J. Org. Chem. 2008, 73, 6580–6586.

(134) Kishi, N.; Li, Z.; Yoza, K.; Akita, M.; Yoshizawa, M. J. Am. Chem. Soc. 2011, 133, 11438-11441.

(135) Kishi, N.; Li, Z.; Sei, Y.; Akita, M.; Yoza, K.; Siegel, J. S.; Yoshizawa, M. Chem. Eur. J. 2013,19, 6313-6320.

(136) Yamashina, M.; Sei, Y.; Akita, M.; Yoshizawa, M. Nat. Commun. 2014, 5, 4662.

(137) Yamashina, M.; Sartin, M.; Sei, Y.; Akita, M.; Takeuchi, S.; Tahara, T.; Yoshizawa, M. J. Am. Chem. Soc. 2015, 37, 9266-9269.

(138) Yamashina, M.; Matsuno, S.; Sei, Y.; Akita, M.; Yoshizawa, M. Chem. Eur. J. 2016, 22,14147-14150.

(139) Yamashina, M.; Akita, M.; Hasegawa, T.; Hayashi, S.; Yoshizawa, M. Sci. Adv., 2017, 3, e1701126.

(140) Matsuno, S.; Yamashina, M.; Sei, Y.; Akita, M.; Kuzume, A.; Yamamoto, K.; Yoshizawa, M.Nat. Commun. 2017, 8, 749.

(141) Basolo, F.; Pearson, R. G. Mechanisms of inorganic reactions; Wiley: New York, 1967.

(142) Canovese, L.; Cattalini, L.;. Uguagliati, P.; Tobe, M. L. J. Chem. Soc. Dalton Trans. 1990, 867–872.

(143) Burdett, J. K. Inorg. Chem. 1977, 16, 3013–3025.

(144) Kishi, N.; Akita, M.; Yoshizawa, M. Angew. Chem. Int. Ed. 2014, 53, 3604–3607.

(145) Korevaar, P. A.; George, S. J.; Markvoort, A. J.; Smulders, M. M. J.; Hilbers, P. A. J.; Schenning, A. P. H. J.; de Greef, T. F. A.; Meijer, E. W. Nature, 2012, 481, 492–496.

(146) Korevaar, P. A.; Newcomb, C. J.; Meijer, E. W.; Stupp, S. I. J. Am. Chem. Soc., 2014, 136, 8540–8543.

(147) van der Zwaag, D.; Pieters, P. A.; Korevaar, P. A.; Markvoort, A. J.; Spiering, A. J. H.; de Greef, T. F. A.; Meijer, E. W. J. Am. Chem. Soc., 2015, 137, 12677–12688.

(148) van der Weegen, R.; Teunissen, A. J. P.; Meijer, E. W. Chem. Eur. J., 2017, 23, 3773–3783.

(149) Ogi, S.; Sugiyasu, K.; Manna, S.; Samitsu, S.; Takeuchi, M. Nat. Chem., 2014, 6, 188–195.

(150) Fukui, T.; Kawai, S.; Fujinuma, S.; Matsushita, Y.; Yasuda, T.; Sakurai, T.; Seki, S.; Takeuchi, M.; Sugiyasu, K. Nat. Chem., 2016, 9, 493–499.

(151) Liang, C.; Ni, R.; Smith, J. E.; Childers, W. S.; Mehta, A. K.; Lynn, D. G. J. Am. Chem. Soc.,2014, 136, 15146–15149.

(152) Komaromy, D.; Stuart, M. C. A.; Monréal Santiago, G.; Tezcan, M.; Krasnikov, V. V.; Otto, S.J. Am. Chem. Soc., 2017, 139, 6234–6241.

(153) Tidhar, Y.; Weissman, H.; Wolf, G. S.; Gulino, A.; Rybtchinski, B. Chem. Eur. J., 2011, 17, 6068–6075.

(154) Raeburn, J.; Cardoso, Z. A.; Adams, J. D. Chem. Soc. Rev., 2013, 42, 5143–5156.

(155) Aliprandi, A.; Mauro, M.; De Cola, L. Nat. Chem., 2016, 8, 10–15.

(156) Mattia, E.; Otto, S. Nat. Nanotech., 2015, 10, 111–119.

(157) Whitelam, S.; Jack, L. R. Annu. Rev. Phys. Chem., 2015, 66, 143–163.

(158) Fujita, D.; Yokoyama, H.; Ueda, Y.; Sato, S.; Fujita, M. Angew. Chem. Int. Ed., 2015, 54, 155– 158.

(159) Garmann, F. R.; Comas-Garcia, M.; Gopal, A.; Knobler, M. C.; Gelbart, M. W. J. Mol. Biol.,2014, 426, 1050–1060.

(160) Jacobs, M. W.; Reinhardt, A.; Frenkel, D. Proc. Natl. Acad. Sci. U.S.A., 2015, 112, 6313–6318.

(161) Ogi, S.; Stepanenko, V.; Thein, J.; Würther, F. J. Am. Chem. Soc., 2016, 138, 670–678.

(162) Du, J.; O’Reilly, K. R. Chem. Soc. Rev., 2011, 40, 2402–2416.

(163) Tantakitti, F.; Boekhoven, J.; Wang, X.; Kazantsev, R. V.; Yu, T.; Li, J.; Zhuang, E.; Zandi, R.; Ortony, J. H.; Newcomb, C. J.; Palmer, L. C.; Shekhawat, G. S.; de la Cruz, M. O.; Schatz, G. C.; Stupp, S. I. Nat. Mater., 2016, 15, 469–476.

(164) Chand, D. K.; Fujita, M.; Biradha, K.; Sakamoto, S.; Yamaguchi, K. Dalton Trans., 2003, 2750–2756.

(165) Chand, D. K.; Manivannan, R.; Sahoo, H. S.; Jeyakumar, K. Eur. J. Inorg. Chem. 2005, 3346– 3352.

(166) Basolo, F.; Pearson, R. G. Mechanisms of inorganic reactions, Wiley, New York, 1967.

(167) Canovese, L.; Cattalini, L.; Uguagliati, P.; Tobe, M. L. J. Chem. Soc. Dalton Trans., 1990, 867–872.

(168) Burdett, J. K. Inorg. Chem., 1977, 16, 3013–3025.

(169) Hunter, C.A.; Anderson, H.L. Angew. Chem. Int. Ed. 2009, 48, 7488–7499.

(170) Tsujimoto, Y.; Kojima, T.; Hiraoka, S. Chem. Sci., 2014, 5, 4167–4172.

(171) Kai, S.; Marti-Centelles, V.; Sakuma, Y.; Mashiko, T.; Kojima, T.; Nagashima, U.; Tachikawa, M.; Lusby, P. J.; Hiraoka, S. Chem. Eur. J., 2018, 24, 663–671.

(172) Kai, S.; Sakuma, Y.; Mashiko, T.; Kojima, T.; Tachikawa, M.; Hiraoka, S. Inorg. Chem., 2017,56, 12652–12663.

Chapter 3

(1) Reichardt, C.; Welton, T. Solvent and solvent effects in organic chemistry; Wiley: Weinheim, 2011.

(2) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810–6918.

(3) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev. 2013, 113, 734–777.

(4) Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001–7045.

(5) Wang, W.; Wang, Y.-X.; Yang, H.-B. Chem. Soc. Rev. 2016, 45, 2656–2693.

(6) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 825–841.

(7) Jin, P.; Dalgarno, S. J.; Atwood, J. L. Chem. Rev. 2010, 254, 1760–1768.

(8) Zarra, S.; Wood, D. M.; Roberts, D. A.; Nitschke, J. R. Chem. Soc. Rev. 2015, 44, 419–432.

(9) Han, M.; Engelhard, D. M.; Clever, G. H. Chem. Soc. Rev. 2014, 43, 1848–1860.

(10) Biros, S. M.; Yeh, R. M.; Raymond, K. N. Angew. Chem. Int. Ed. 2008, 47, 6062–6064.

(11) Sprafke, J. K.; Odell, B.; Claridge, T. D. W.; Anderson, H. L. Angew. Chem. Int. Ed. 2011, 50, 5572–5575.

(12) Kumari, H.; Mossine, A. V.; Kline, S. R.; Dennis, C. L.; Fowler, D. A.; Teat, S. J.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Angew. Chem. Int. Ed. 2012, 51, 1452–1454.

(13) Riddell, I. A.; Smulders, M. M. J.; Clegg, J. K.; Hristova, Y. R.; Breiner, B.; Thoburn, J. D.; Nitschke, J. R. Nat. Chem. 2012, 4, 751–756.

(14) Bilbeisi, R. A.; Ronson, T. K.; Nitschke, J. R. A. Angew. Chem. Int. Ed. 2013, 52, 9027–9030.

(15) Maeda, H.; Nishimura, T.; Akuta, R.; Takaishi, K.; Uchiyama, M.; Muranaka, A. Chem. Sci.2013, 4, 1204–1211.

(16) Ayme, J. F.; Beves, J. E.; Campbell, C. J.; Leigh, D. A. Angew. Chem. Int. Ed. 2014, 53, 7823– 7827.

(17) Thorp-Greenwood, F. L.; Kulak, A. N.; Hardie, M. J. Nat. Chem. 2015, 7, 526–531.

(18) Wang, S.-Y.; Fu, J.-H.; Liang, Y.-P.; He, Y.-J.; Chen, Y.-S.; Chan, Y.-T. J. Am. Chem. Soc. 2016,138, 3651–3654.

(19) Burke, M. J.; Nichol, G. S.; Lusby, P. J. J. Am. Chem. Soc. 2016, 138, 9308–9315.

(20) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369–378.

(21) Fujita, D.; Ueda, Y.; Sato, S.; Yokoyama, H.; Mizuno, N.; Kumasaka, T.; Fujita, M. Chem 2016,1, 91–101.

(22) Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Nature 2016, 540, 563–566.

(23) Troff, R. W.; Hovorka, R.; Weilandt, T.; Lützen, A.; Cetina, M.; Nieger, M.; Lentz, D.; Rissanen, K.; Schalley, C. A. Dalton Trans. 2012, 41, 8410–8420.

(24) Ronson, T. K.; Fisher, J.; Harding, L. P.; Rizkallah, P. J.; Warren, J. E.; Hardie, M. J. Nat. Chem.2009, 1, 212–216.

(25) Gütz, C.; Hovorka, R.; Klein, C.; Jiang, Q.-Q.; Bannwarth, C.; Engeser, M.; Schmuck, C.; Assenmacher, W.; Mader, W.; Topić, F.; Rissanen, K.; Grimme, S.; Lützen, A. Angew. Chem. Int. Ed. 2014, 53, 1693–1698.

(26) Preston, D.; Lewis, J. E. M.; Crowley, J. M. J. Am. Chem. Soc. 2017, 139, 2379–2386.

(27) August, D. P.; Nichol, G. S.; Lusby, P. J. Angew. Chem. Int. Ed. 2016, 55, 15022–15026.

(28) Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2016, 138, 13750–13755.

(29) Yazaki, K.; Akita, M.; Prusty, S.; Chand, D. K.; Kikuchi, T.; Sato, H.; Yoshizawa, M. Nat. Commun. 2017, 8, 15914.

(30) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P. J. Acc. Chem. Res. 2009, 42, 1554–1563.

(31) Zheng, Y.-R.; Zhao, Z.; Wang, M.; Ghosh, K.; Pollock, J. B.; Cook, T. R.; Stang, P. J. J. Am. Chem. Soc. 2010, 132, 16873–16882.

(32) Bhat, I. A.; Samanta, D.; Mukherjee, P. S. J. Am. Chem. Soc. 2015, 137, 9497–9502.

(33) Sepehrpour, H.; Saha, M. L.; Stang, P. J. J. Am. Chem. Soc. 2017, 139, 2553–2556.

(34) Cecot, G.; Marmier, M.; Geremia, S.; De Zorzi, R.; Vologzhanina, A. V.; Pattison, P.; Solari, E.; Tirani, F. F.; Scopelliti, R.; Severin, K. J. Am. Chem. Soc. 2017, 139, 8371–8381.

(35) Tobe, M. L.; Burgess, J. Inorganic reaction mechanisms; Longman: 1999.

(36) Basolo, F.; Pearson, R. G. Mechanisms of inorganic reactions; Wiley: New York, 1967.

(37) Canovese, L.; Cattalini, L.; Uguagliati, P.; Tobe, M. L. J. Chem. Soc., Dalton Trans. 1990, 867– 872.

(38) Burdett, J. K. Inorg. Chem. 1977, 16, 3013–3025.

(39) Cooper, J.; Ziegler, T. Inorg. Chem. 2002, 41, 6614–6622.

(40) Chand, D. K.; Manivannan, R.; Sahoo, H. S.; Jeyakumar, K. Eur. J. Inorg. Chem. 2005, 3346– 3352.

(41) Wu, X.-R.; Shi, H.-Y.; Wei, R.-J.; Li, J.; Zheng, L.-S.; Tao, J. Inorg. Chem. 2015, 54, 3773– 3780.

(42) Han, L.-L.; Hu, T.-P.; Mei, K.; Guo, Z.-M.; Yin, C.; Wang, Y.-X.; Zheng, J.; Wang, X.-P.; Sun,D. Dalton Trans. 2015, 44, 6052–6061.

(43) Oliveri, I. P.; Malandrino, G.; Di Bella, S. Dalton Trans. 2014, 43, 10208–10214.

(44) Zhang, X.; Gao, D.; Gao, J.; Zhu, P.; Bouvet, M.; Chen, Y. RSC Adv. 2014, 4, 14807–14814.

(45) Ohara, K.; Tominaga, M.; Azumaya, I.; Yamaguchi, K. Anal. Sci. 2013, 29, 773–776.

(46) Tan, Y.-X.; He, Y.-P.; Zhang, Y.; Zheng, Y.-J.; Zhang, J. CrystEngComm. 2013, 15, 6009–6014.

(47) Li, C.-P.; Du, M. Chem. Commun. 2011, 47, 5958–5972.

(48) Pedireddi, V. R.; Varughese, S. Inorg. Chem. 2004, 43, 450–457.

(49) Oh, M.; Carpenter, G. B.; Sweigart, D. A. Organometallics 2003, 22, 2364–2366.

(50) Baxter, P. N. W.; Khoury, R. G.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem.–Eur. J. 2000, 6, 4140–4148.

(51) Ellis, R. J. Phil. Trans. R. Soc. B 2013, 368, 20110398.

(52) Saibil, H. Nat. Rev. Mol. Cell Biol. 2013, 14, 630–642.

(53) Tsujimoto, Y.; Kojima, T.; Hiraoka, S. Chem. Sci. 2014, 5, 4167–4172.

(54) Matsumura, Y; Hiraoka, S.; Sato, H. Phys. Chem. Chem. Phys. 2017, 19, 20338–20342.

(55) Hiraoka, S.; Harano, K.; Shiro, M.; Ozawa, Y.; Yasuda, N.; Toriumi, K.; Shionoya, M. Angew. Chem. Int. Ed. 2006, 45, 6488–6491.

(56) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M .A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford CT, 2009.

Chapter 4

(1) Hiraoka, S. Bull. Chem. Soc. Jpn. 2018, 91, 957–978.

(2) Hiraoka S. Israel. J. Chem. 2018, 58, 1–16.

(3) Hiraoka, S. Chem. Rec. 2015, 15, 1144–1147.

(4) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369–378.

(5) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P. J. Acc. Chem. Res. 2009, 42, 1554–1563.

(6) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev., 2011, 111, 6810–6918.

(7) Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2016, 138, 13750–13755.

(8) Chand, D. K.; Fujita, M.; Biradha, K.; Sakamoto, S.; Yamaguchi, K. Dalton Trans. 2003, 2750– 2756.

(9) Suzuki, K.; Kawano, M.; Fujita, M. Angew. Chem. Int. Ed. 2007, 46, 2819–2822.

(10) McMorran, D. A.; Steel, P. J. Angew. Chem. Int. Ed. 1998, 37, 3295–3297.

(11) Liao, P.; Langloss, B. W.; Johnson, A. M.; Knudsen, E. R.; Tham, F. S.; Julian, R. R.; Hooley, R.J. Chem. Commun. 2010, 46, 4932–4934.

(12) Wu, N.-W.; Zhang, J.; Ciren, D.; Han, Q.; Chen, L.-J.; Xu, L.; Yang, H.-B. Organometallics2013, 32, 2536–2545.

(13) Stang, P. J.; Persky, N. E.; Manna, J. J. Am. Chem. Soc. 1997, 119, 4777–4778.

(14) Kishi, N.; Li, Z.; Yoza, K.; Akita, M.; Yoshizawa, M. J. Am. Chem. Soc. 2011, 133, 11438– 11441.

(15) Gütz, C.; Hovorka, R.; Schnakenburg, G.; Lützen, A. Chem. Eur. J. 2013, 19, 10890–10894.

(16) Chand, D. K.; Biradha, K.; Kawano, M.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Chem. Asian J.2006, 1, 82–90.

(17) Fujita, D.; Yokoyama, H.; Ueda, Y.; Sato, S.; Fujita, M. Angew. Chem. Int. Ed. 2015, 54, 155– 158.

(18) Ronson, T. K.; Fisher, J.; Harding, L. P.; Hardie, M. J. Angew. Chem. Int. Ed. 2007, 46, 9086– 9088.

(19) Kai, S.; Maddala, S. P.; Kojima, T.; Akagi, S.; Harano, K.; Nakamura, E.; Hiraoka, S. Dalton Trans. 2018, 47, 3258–3263.

(20) Kai, S.; Marti-Centelles, V.; Sakuma, Y.; Mashiko, T.; Kojima, T.; Nagashima, U.; Tachikawa, M.; Lusby, P. J.; Hiraoka, S. Chem. - Eur. J. 2018, 24, 663−671.

(21) Tateishi, T.; Zhu, W.; Foianesi-Takeshige, L. H.; Kojima, T.; Ogata, K.; Hiraoka, S. Eur. J. Inorg. Chem. 2018, 1192–1197.

(22) Tateishi, T.; Kai, S.; Sasaki, Y.; Kojima, T.; Takahashi, S.; Hiraoka, S. Chem. Commun. 2018, 54, 7758–5561.

(23) Fujita, M.; Nagao, S.; Iida, M.; Ogata, K.; Ogura, K. J. Am. Chem. Soc. 1993, 115, 1574–1577.

(24) Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001–7045.

(25) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev. 2013, 113, 734–777.

(26) Harris, K.; Fujita, D.; Fujita, M. Chem. Commun. 2013, 49, 6703–6712.

(27) Schmidt, A.; Casini, A.; Kühn, F. E. Coord. Chem. Rev. 2014, 275, 19–36.

(28) Han, M.; Engelhard, D. M.; Clever, G. H. Chem. Soc. Rev. 2014, 43, 1848–1860.

(29) Hardie, M. J. Chem. Lett. 2016, 45, 1336–1346.

(30) Fujita, D.; Ueda, Y.; Sato, S.; Yokoyama, H.; Mizuno, N.; Kumasaka, T.; Fujita, M. Chem 2016,1, 91–101.

(31) Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Nature 2016, 540, 563–566.

(32) Preston, D.; Lewis, J. E. M.; Crowley, J. M. J. Am. Chem. Soc. 2017, 139, 2379–2386.

(33) August, D. P.; Nichol, G. S.; Lusby, P. J. Angew. Chem. Int. Ed., 2016, 55, 15022–15026.

(34) Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. J. Am. Chem. Soc. 2016, 138, 13750–13755.

(35) Preston, D.; Barnsley, D. J. E.; Gordon, K. C.; Crowley, J. D. J. Am. Chem. Soc. 2016, 138, 10578–10585.

(36) Bhat, I. A.; Samanta, D.; Mukherjee, P. S. J. Am. Chem. Soc. 2015, 137, 9497–9502.

(37) Yazaki, K.; Noda, S.; Tanaka, Y.; Sei, Y.; Akita, M.; Yoshizawa, M. Angew. Chem. Int. Ed.,2016, 55, 15031–15034.

(38) Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa, T.; Ozeki, T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Angew. Chem. Int. Ed. 2004, 43, 5621–5625.

(39) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 11950–11951.

(40) Kikuchi, T.; Murase, T.; Sato, S.; Fujita, M. Supramol. Chem. 2008, 20, 81−94.

(41) Bruns, C. J.; Fujita, D.; Hoshino, M.; Sato, S.; Stoddart, J. S.; Fujita, M. J. Am. Chem. Soc. 2014,136, 12027–12034.

(42) Fujita, D.; Yokoyama, H.; Ueda, Y.; Sato, S.; Fujita, M. Angew. Chem. Int. Ed., 2015, 54, 155– 158.

(43) Gütz, C.; Hovorka, R.; Klein, C.; Jiang, Q.-Q.; Bannwarth, C.; Engeser, M.; Schmuck, C.; Assenmacher, W.; Mader, W.; Topić, F.; Rissanen, K.; Grimme, S.; Lützen, A. Angew. Chem. Int. Ed., 2014, 53, 1693–1698.

(44) Yoneya, M.; Tsuzuki, S.; Yamaguchi, T.; Sato, S.; Fujita, M. ACS Nano 2014, 8, 1290–1296.

(45) Tsujimoto, Y.; Kojima, T.; Hiraoka, S. Chem. Sci. 2014, 5, 4167–4172.

(46) Baba, A.; Kojima, T.; Hiraoka, S. J. Am. Chem. Soc. 2015, 137, 7664–7667.

(47) Kai, S.; Sakuma, Y.; Mashiko, T.; Kojima, T.; Tachikawa, M.; Hiraoka, S. Inorg. Chem. 2017,56, 12652–12663.

(48) Baba, A.; Kojima, K.; Hiraoka, S. Chem. Eur. J. 2018, 24, 838–847.

(49) Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions, 1967, Wiley, New York.

(50) Canovese, L.; Cattalini, L.; Uguagliati, P.; Tobe, M. L. J. Chem. Soc. Dalton Trans. 1990, 867– 872.

(51) Pearson, R. G.; Sobel, H. R.; Songstad, J. J. Am. Chem. Soc. 1968, 90, 319–326.

(52) Karplus, M. Nat. Chem. Bio. 2011, 7, 401–404.

(53) Englander, S. W.; Mayne, L. Proc. Natl. Acad. Sci. USA 2014, 111, 15873–15880.

(54) Kaae, B. H.; Harpsøe, K.; Kvist, T.; Mathiesen, J. M.; Mølck, C.; Gloriam, D.; Jimenez, H. N.; Uberti, M. A.; Nielsen, S. M.; Nielsen, B.; Bräuner-Osborne, H.; Sauerberg, P.; Clausen, R. P.; Madsen, U. ChemMedChem 2012, 7, 440.

Chapter 5

(1) Canceill, J.; Collet, A.; Gabard, J.; Gottarelli, G.; Spada, G. P. J. Am. Chem. Soc., 1985, 107, 1299–1308.

(2) Canceill, J.; Collet, A.; Gottarelli, G. J. Am. Chem. Soc., 1984, 106, 5997–6003.

(3) Collet, A.; Gottarelli, G. J. Am. Chem. Soc., 1981, 103, 204–205.

(4) Collet, A.; Jacques, J. Tetrahedron Lett., 1978, 19, 1265–1268.

(5) Ronson, T. K.; Fisher, J.; Harding, L. P.; Hardie, M. J. Angew. Chem. Int. Ed., 2007, 46, 9086–9088.

(6) Ronson, T. K.; Carruthers, C.; Fisher, J.; Brotin, T.; Harding, L. P.; Rizkal-lah, P. J.; Hardie,M. J. Inorg. Chem., 2010, 49, 675–685.

(7) Henkelis, J. J.; Fisher, J.; Warriner, S. L.; Hardie, M. J. Chem. Eur. J., 2014, 20, 4117–4125.

(8) Cookson, N. J.; Henkelis, J. J.; Ansell, R. J.; Fishwick, C. W. G.; Hardie, M. J.; Fisher, J.Dalton Trans., 2014, 43, 5657–5661.

(9) Collet, A.; Gabard, J. J. Org. Chem., 1980, 45, 5400–5401.

(10) Kai, S.; Sakuma, Y.; Mashiko, T.; Kojima, T.; Tachikawa, M. Hiraoka, S. Inorg. Chem., 2017, 56, 12652–12663.

(11) Kai, S.; Marti-Centelles, V.; Sakuma, Y.; Mashiko, T.; Kojima, T.; Nagashima, U.; Tachikawa, M.; Lusby, P. J.; Hiraoka, S. Chem. Eur. J., 2018, 24, 663–671.

(12) Hiraoka, S. Chem. Rec., 2015, 15, 1144–1147.

(13) Baba, A.; Kojima, T.; Hiraoka, S. J. Am. Chem. Soc., 2015, 137, 7664–7667.

(14) Tsujimoto, Y.; Kojima, T.; Hiraoka, S. Chem. Sci., 2014, 5, 4167–4172.

(15) Tobe, M. L.; Burgess, J. Inorganic Reaction Mechanisms; Longman: London, U.K., 1999.

(16) Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions: A Study of Metal Complexes in Solution; John Wiley, and Sons, Inc.: New York, 1967.

(17) Cooper, J.; Ziegler, T. A. Inorg. Chem., 2002, 41, 6614–6622.

(18) Hardie, M. J.; Sumby, C. J. Inorg. Chem. 2004 , 43, 6872–6874.

(19) Pritchard, V. E.; Martir, D. R.; Oldknow, S.; Kai, S.; Hiraoka, S.; Cookson, N. J.; Zysman-Colman, E.; Hardie, M. J. Chem. Eur. J. 2017, 23, 6290–6294.

Chapter 6

(1) Tsujimoto, Y.; Kojima, T.; Hiraoka, S. Chem. Sci. 2014, 5, 4167–4172.

(2) Tateishi, T.; Kojima, T.; Hiraoka, S. Inorg. Chem. 2018, 57,1192–1197.

(3) Tateishi, T.; Zhu, W.; Foianesi-Takeshige, L. H.; Kojima, T.; Ogata, K.; Hiraoka, S. Eur. J. Inorg. Chem. 2018, 1192–1197.

(4) Tateishi, T.; Kai, S.; Sasaki, Y.; Kojima, T.; Takahashi, S.; Hiraoka, S. Chem. Commun. 2018, 54, 7758–5561.

(5) Kikuchi, T.; Murase, T.; Sato, S.; Fujita, M. Supramol. Chem. 2008, 20, 81−94.

(6) Yoneya, M.; Tsuzuki, S.; Yamaguchi, T.; Sato, S.; Fujita, M. ACS Nano 2014, 8, 1290–1296.

(7) Tateishi, T.; Kojima, T.; Hiraoka, S. Commun. Chem. 2018, 1, 20.

参考文献をもっと見る