リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on Isolable π-Electron Species Containing an Inverted Si=Si Bond and an Unsupported Si-Si π-Bond」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on Isolable π-Electron Species Containing an Inverted Si=Si Bond and an Unsupported Si-Si π-Bond

Nukazawa Takumi 東北大学

2022.03.25

概要

Molecules that exhibit nonclassical geometries and chemical bonds have fascinated experimental and theoretical chemists,1 since the exploration of such molecules usually leads to a deeper understanding of their molecular structures and chemical bonds as well as to the discovery of unexpected reactivity. A representative example of such an intriguing organic molecule is [1.1.1]propellane A (Chart 1-1). 2 This compound has a nonclassical single bond between bridgehead carbon atoms that adopt an inverted (or a hemispheroidal) geometry; the direction of the bridgehead single bond is diametrically opposite to that expected for typical C–C bonds in a normal tetrahedral geometry (Chart 1-1). 3 The theoretical and experimental investigation for the nature of the inverted single bond in A revealed that the single bond exhibits diradical or ionic characters. Currently, the high reactivity of A has been utilized for the bond-forming reactions. 4

Such nonclassical bonds with an inverted geometry should also be possible for multiple bonds. Bicyclo[1.1.0]but-1(3)-ene B represents one extreme example of compounds with an inverted double bond, whereby the direction of the double bond is formally oriented in the diametrically opposite direction to that expected for a normal C=C double bond geometry (Chart 1-2). 5,6 Theoretical study suggested that compound B exhibits the several resonance structures (Chart 1-3), 5 implying the high reactivity of the inverted double bond. Although B and its derivatives have been proposed as reactive intermediates,6 they have not yet been isolated and their molecular structures and reactivity have not been investigated experimentally.

Recently, our group synthesized tetrasilabicyclo[1.1.0]but-1(3)-ene 1, the first isolable silicon analogue of bicyclo[1.1.0]but-1(3)-ene (Chart 1-4). 7 Single-crystal X-ray diffraction (XRD) analysis of 1 revealed that the central Si4 bicyclic skeleton is planar, and DFT calculation suggested that the bridgehead Si=Si bond comprises a π-bond and an inverted σ-bond as found between bridgehead atoms in pentasila[1.1.1]propellane (Chart 1-4). 8 In spite of the highly-distorted Si=Si bond in 1, it exhibits very low reactivity toward small molecules such as H2O, methanol, cyclohexa-1,4-diene, Bu3SnH, Ph3P, or BPh3 probably due to severe steric demand of the Si(i-Pr)Me2 groups. In this thesis, the author synthesized new tetrasilabicyclo[1.1.0]but-1(3)-ene 2 that has less bulky SiMe3 groups to examine the reactivity of the inverted Si=Si bond (Chart 1-4). Through the investigation of the reactivity of 2 for various reagents, the author found that 2 could be the useful precursor for the synthesis of unconventional π-electron compounds of silicon.

In chapter 2, the author described the synthesis and isolation of tetrasilabicyclo[1.1.0]but-1(3)-ene 2. Single-crystal XRD analysis and spectroscopic analysis indicated that the structural and electronic characteristics of 2 are virtually identical to those of 1. The reactions of 2 with carbon tetrachloride and methanol were also described.

In chapter 3, the author described the synthesis and properties of 1,3-diiodotetrasilabicyclo[1.1.0]butane 3 via 1,2-diiodination of 2 (Chart 1-5). Single-crystal XRD analysis and theoretical study suggested that 3 exhibits the π-type single bond (the unsupported π-bond) between the bridgehead silicon atoms.

In chapter 4, the author described the synthesis of 1,3-dichlorotetrasilabicyclo[1.1.0]butane 4 with the π-type bridgehead Si–Si bond via 1,2-dichlorination of 2. The interconversion between 4 and its isomer, 1-chloro-2-(chlorosilyl)cyclotrisilene 5 is also described (Scheme 1-1).

In chapter 5, the author described the reactions of 4 with a lithium acetylide to provide bicyclo[1.1.0]tetrasilanes 6 and 7 with alkynyl groups on the bridgehead silicon atoms (Scheme 1-2). π-Conjugation between the unsupported Si–Si π-bond of the bicyclo[1.1.0]tetrasilane unit and the alkynyl groups were examined in detail.

In chapter 6, the author described the reactions of 2 with nucleophilic reagents. The reaction of 2 with lithium aluminum hydride (LiAlH4) unexpectedly provided the first isolable cyclotrisilenide 8 (Scheme 1-3).

この論文で使われている画像

参考文献

1-2. References

(1) (a) Hoffmann, R.; Hopf, H. Angew. Chem., Int. Ed. 2008, 47, 4474–4481. See also: (b) Borden, W. T. Chem. Rev. 1989, 89, 1095–1109. (c) Mastryukov, V. S.; Boggs, J. E. Struct. Chem. 2000, 11, 97–103. (d) Vázquez, S.; Camps, P. Tetrahedron 2005, 61, 5147–5208.

(2) (a) Wiberg, K. B.; Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239−5240. (b) Levin, M. D.; Kaszynski, P.; Michl, J. Chem. Rev. 2000, 100, 169−234. (c) Nied, D.; Breher, F. Chem. Soc. Rev. 2011, 40, 3455−3466. (d) Dilmaç, A. M.; Spuling, E.; de Meijere, A.; Bräse, S. Angew. Chem., Int. Ed. 2017, 56, 5684−5718.

(3) (a) Wiberg, K. B. Acc. Chem. Res. 1984, 17, 379−386. (b) Iwamoto, T.; Ishida, S. Chem. Lett. 2014, 43, 164−170. (c) Heider, Y.; Scheschkewitz, D. Dalton Trans. 2018, 47, 7104−7112. (d) Heider, Y.; Poitiers, N. E.; Willmes, P.; Leszczyńska, K. I.; Huch, V.; Scheschkewitz, D. Chem. Sci. 2019, 10, 4523−4530. (e) Heider, Y.; Scheschkewitz, D. Chem. Rev. 2021, 121, 9674−9718

(4) (a) Gianatassio, R.; Lopchuk, J. M.; Wang, J.; Pan, C. M.; Malins, L. R.; Prieto, L.; Brandt, T. A.; Collins, M. R.; Gallego, G. M.; Sach, N. W.; Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. Science 2016, 351, 241-246. (b) Lopchuk, J. M.; Fjelbye, K.; Kawamata, Y.; Malins, L. R.; Pan, C. M.; Gianatassio, R.; Wang, J.; Prieto, L.; Bradow, J.; Brandt, T. A.; Collins, M. R.; Elleraas, J.; Ewanicki, J.; Farrell, W.; Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Oliver, R.; Sach, N. W.; Smith, J. K.; Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 3209-3226. (c) Kanazawa, J.; Maeda, K.; Uchiyama, M. J. Am. Chem. Soc. 2017, 139, 17791-17794. (d) Kanazawa, J.; Uchiyama, M. Synlett 2019, 30, 1-11.

(5) (a) Hehre, W. J.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 6941–6955. (b) Wagner, H. U.; Szeimies, G.; Chandrasekhar, J.; Schleyer, P. v. R.; Pople, J. A.; Binkley, J. S. J. Am. Chem. Soc. 1978, 100, 1210–1213. (c) Kollmar, H.; Carrion, F.; Dewar, M. J. S.; Bingham, R. C. J. Am. Chem. Soc. 1981, 103, 5292–5303. (d) Hess, B. A. Jr.; Allen, W. D.; Michalska, D.; Schaad, L. J.; Schaefer H. F. III J. Am. Chem. Soc. 1987, 109, 1615–1621. (e) Hess, B. A. Jr.; Michalska, D.; Schaad, L. J. J. Am. Chem. Soc. 1987, 109, 7546–7547. (f) Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1988, 110, 4710–4718. (g) Wiberg, K. B.; Artis, D. R.; Bonneville, G. J. Am. Chem. Soc. 1991, 113, 7969–7979. (h) Prakash, G. K. S.; Rasul, G.; Reddy, V. P.; Casanova, J. J. Am. Chem. Soc. 1992, 114, 6484–6486. (i) Nguyen, T. L.; Le, T. N.; Mebel, A. M.; Lin, S. H. Chem. Phys. Lett. 2000, 326, 468–476. (j) Dinadayalane, T. C.; Priyakumar, U. D.; Sastry, G. N. J. Phys. Chem. A 2004, 108, 11433–11448. (k) Rasul, G.; Olah, G. A.; Prakash, G. K. S. J. Phys. Chem. A 2006, 110, 7197–7201. (l) Cremer, D.; Kraka, E.; Joo, H.; Stearns, J. A.; Zwier, T. S. Phys. Chem. Chem. Phys. 2006, 8, 5304–5316. (m) Mebel, A. M.; Kislov, V. V.; Kaiser, R. I. J. Chem. Phys. 2006, 125, 133113. (n) Fujita, Y.; Abe, M.; Shiota, Y.; Suzuki, T.; Yoshizawa, K. Bull. Chem. Soc. Jpn. 2016, 89, 770–778.

(6) (a) Szeimies, G.; Harnisch, J.; Baumgärtel, O. J. Am. Chem. Soc. 1977, 99, 5183−5184. (b) Szeimies-Seebach, U.; Harnisch, J.; Szeimies, G.; Van Meerssche, M.; Germain, G.; Declerq, J.-P. Angew. Chem., Int. Ed. Engl. 1978, 17, 848−850. (c) Zoch, H.-G.; Szeimies, G.; Romer, R.; Schmitt, R. Angew. Chem., Int. Ed. Engl. 1981, 20, 877−878. (d) Schlüter, A.-D.; Harnisch, H.; Harnisch, J.; Szeimies-Seebach, U.; Szeimies, G. Chem. Ber. 1985, 118, 3513−3528.

(7) Iwamoto, T.; Abe, T.; Sugimoto, K.; Hashizume, D.; Matsui, H.; Kishi, R.; Nakano, M.; Ishida, S. Angew. Chem., Int. Ed. 2019, 58, 4371−4375.

(8) Nied, D.; Köppe, R.; Klopper, W.; Schnöckel, H.; Breher, F. J. Am. Chem. Soc. 2010, 132, 10264−10265.

2-5. Reference

(1) (a) R. Hoffmann, H. Hopf, Angew. Chem., Int. Ed. 2008, 47, 4474–4481. See also: (b) W. T. Borden, Chem. Rev. 1989, 89, 1095–1109; (c) V. S. Mastryukov, J. E. Boggs, Struct. Chem. 2000, 11, 97–103; (d) S. Vázquez, P. Camps, Tetrahedron 2005, 61, 5147–5208.

(2) (a) K. B. Wiberg, Acc. Chem. Res. 1984, 17, 379–386; (b) T. Iwamoto, S. Ishida, Chem. Lett. 2014, 43, 164–170; (c) Y. Heider, D. Scheschkewitz, Dalton Trans. 2018, 47, 7104–7112.

(3) (a) G. Szeimies, J. Harnisch, O. Baumgärtel, J. Am. Chem. Soc. 1977, 99, 5183–5184; (b) U. Szeimies-Seebach, J. Harnisch, G. Szeimies, M. Van Meerssche, G. Germain, J.-P. Declerq, Angew. Chem., Int. Ed. Engl. 1978, 17, 848–850; (c) H.-G. Zoch, G. Szeimies, R. Romer, R. Schmitt, Angew. Chem., Int. Ed. Engl. 1981, 20, 877–878; (d) A.-D. Schlüter, H. Harnisch, J. Harnisch, U. Szeimies-Seebach, G. Szeimies, Chem. Ber. 1985, 118, 3513–3528.

(4) (a) W. J. Hehre, J. A. Pople, J. Am. Chem. Soc. 1975, 97, 6941–6955; (b) H. U. Wagner, G. Szeimies, J. Chandrasekhar, P. v. R. Schleyer, J. A. Pople, J. S. Binkley, J. Am. Chem. Soc. 1978, 100, 1210–1213; (c) H. Kollmar, F. Carrion, M. J. S. Dewar, R. C. Bingham, J. Am. Chem. Soc. 1981, 103, 5292–5303; (d) B. A. Hess, Jr., W. D. Allen, D. Michalska, L. J. Schaad, H. F. Schaefer III, J. Am. Chem. Soc. 1987, 109, 1615–1621; (e) B. A. Hess, Jr., D. Michalska, L. J. Schaad, J. Am. Chem. Soc. 1987, 109, 7546–7547; (f) D. A. Hrovat, W. T. Borden, J. Am. Chem. Soc. 1988, 110, 4710–4718; (g) K. B. Wiberg, D. R. Artis, G. Bonneville, J. Am. Chem. Soc. 1991, 113, 7969–7979; (h) G. K. S. Prakash, G. Rasul, V. P. Reddy, J. Casanova, J. Am. Chem. Soc. 1992, 114, 6484–6486; (i) T. L. Nguyen, T. N. Le, A. M. Mebel, S. H. Lin, Chem. Phys. Lett. 2000, 326, 468–476; (j) T. C. Dinadayalane, U. D. Priyakumar, G. N. Sastry, J. Phys. Chem. A 2004, 108, 11433–11448; (k) G. Rasul, G. A. Olah, G. K. S. Prakash, J. Phys. Chem. A 2006, 110, 7197–7201; (l) D. Cremer, E. Kraka, H. Joo, J. A. Stearns, T. S. Zwier, Phys. Chem. Chem. Phys. 2006, 8, 5304–5316; (m) A. M. Mebel, V. V. Kislov, R. I. Kaiser, J. Chem. Phys. 2006, 125, 133113; (n) Y. Fujita, M. Abe, Y. Shiota, T. Suzuki, K. Yoshizawa, Bull. Chem. Soc. Jpn. 2016, 89, 770–778. For silicon analogues of BBE, see: (o) B. F. Yates, H. F. Schaefer III, Chem. Phys. Lett. 1989, 155, 563–571.

(5) T. Iwamoto, T. Abe, K. Sugimoto, D. Hashizume, H. Matsui, R. Kishi, M. Nakano, S. Ishida, Angew. Chem., Int. Ed. 2019, 58, 4371–4375.

(6) (a) K. Leszczynska, K. Abersfelder, A. Mix, B. Neumann, H. G. Stammler, M. J. Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem., Int. Ed. 2012, 51, 6785–6788; (b) D. Wendel, T. Szilvasi, C. Jandl, S. Inoue, B. Rieger, J. Am. Chem. Soc. 2017, 139, 9156–9159. For recent comprehensive reviews, see: (c) T. Iwamoto, M. Kira, Adv. Organomet. Chem. 2006, 54, 73–148; (d) R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877–3927; (e) T. Iwamoto, S. Ishida, in Structure and Bonding, Springer, Berlin, 2014, vol. 156, pp. 125–202; (f) C. Präsang, D. Scheschkewitz, Chem. Soc. Rev. 2016, 45, 900–921.

(7) D. Nied, R. Köppe, W. Klopper, H. Schnöckel, F. Breher, J. Am. Chem. Soc. 2010, 132, 10264–10265.

(8) (a) In this reaction condition, we did not observe the formation of a trisilaallene, which is obtained by the reduction of the corresponding tetrachlorodisilane with potassium graphite in THF. See: S. Ishida, T. Iwamoto, C. Kabuto, M. Kira, Nature 2003, 421, 725–727; (b) For a study on the machine learning concerning the optimization of the reaction conditions, see: M. Fujinami, J. Seino, T. Nukazawa, S. Ishida, T. Iwamoto, H. Nakai, Chem. Lett. 2019, 48, 961–964.

(9) T. Iwamoto, H. Sakurai, M. Kira, Bull. Chem. Soc. Jpn. 1998, 71, 2741–2747.

(10) The 1H NMR spectrum of the reaction mixture (Figure 2-34) was very complicated in the SiMe3 region and it was difficult to identify signals of 4 and 5 clearly.

(11) S. Masamune, Y. Kabe, S. Collins, D. J. Williams, R. Jones, J. Am. Chem. Soc. 1985, 107, 5552–5553.

(12) As an orange precipitate which might be due to the intermediate was observed at low temperatures, it was difficult to discuss the formation of the products quantitatively.

(13) S. Boomgaarden, W. Saak, M. Weidenbruch, Z. Anorg. Allg. Chem. 2001, 627, 349–352.

(14) The isomerisation of bicyclo[1.1.0]tetrasilane 7 (or 10) to tetrasiladiene 8 (or 11) is predicted to be endergonic [49.7 kJ mol−1 (or 45.6 kJ mol−1 )] (298.15 K) at the B3LYP-D3/6-31G(d) level of theory. The activation barriers for the isomerisation as well as the relative reactivity of the bridgehead Si–Si bonds in 7 and 10 and the Si=Si bond in 8 and 11 toward carbon tetrachloride and methanol should be responsible for the formation of 4 and 5 as well as 9.

(15) (a) M. Ichinohe, Y. Arai, A. Sekiguchi, N. Takagi, S. Nagase, Organometallics 2001, 20, 4141–4143; (b) A. Sekiguchi, M. Ichinohe, R. Kinjo, Bull. Chem. Soc. Jpn. 2006, 79, 825–832; (c) T. Iwamoto, T. Abe, S. Ishida, C. Kabuto, M. Kira, J. Organomet. Chem. 2007, 692, 263–270.

(16) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179.

(17) M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722–9723.

(18) M. Kira, T. Hino, Y. Kubota, N, Matsuyama, H. Sakurai, Tetrahedron Lett. 1988, 29, 6939–6942.

(19) G. M. Sheldrick, SADABS, Empirical Absorption Correction Program, Göttingen, Germany, 1996.

(20) G. M. Sheldrick, SHELXL-2014, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 2014.

(21) K. Wakita, Yadokari-XG, Software for Crystal Structure Analyses, 2001; Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses; C. Kabuto, S. Akine, T. Nemoto, E. Kwon, J. Crystallogr. Soc. Jpn. 2009, 51, 218–224.

(22) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

3-5. Reference and Notes

(1) For recent reviews of π single bonding compounds, see: (a) Abe, M. Chem. Rev. 2013, 113, 7011−7088. (b) Abe, M.; Akisaka, R. Chem. Lett. 2017, 46, 1586−1592. For a study on compounds that contain multiple π bonds unsupported by an underlying σ-bond framework, see: (c) Jemmis, E. D.; Pathak, B.; King, R. B.; Schaefer, H. F., III. Chem. Commun. 2006, 2164−2166.

(2) (a) Adam, W.; Borden, W. T.; Burda, C.; Foster, H.; Heidenfelder, T.; Heubes, M.; Hrovat, D. A.; Kita, F.; Lewis, S. B.; Scheutzow, D.; Wirz, J. J. Am. Chem. Soc. 1998, 120, 593−594. (b) Abe, M.; Adam, W.; Nau, W. M. J. Am. Chem. Soc. 1998, 120, 11304−11310. (c) Abe, M.; Adam, W.; Heidenfelder, T.; Nau, W. M.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 2019−2026. (d) Abe, M.; Adam, W.; Hara, M.; Hattori, M.; Majima, T.; Nojima, M.; Tachibana, K.; Tojo, S. J. Am. Chem. Soc. 2002, 124, 6540−6541.

(3) (a) Abe, M.; Furunaga, H.; Ma, D.; Gagliardi, L.; Bodwell, G. J. J. Org. Chem. 2012, 77, 7612−7619. (b) Harada, Y.; Wang, Z.; Kumashiro, S.; Hatano, S.; Abe, M. Chem. Eur. J. 2018, 24, 14808−14815. (c) Ye, J.; Fujiwara, Y.; Abe, M. Beilstein J. Org. Chem. 2013, 9, 925−933. (d) Akisaka, R.; Abe, M. Chem. Asian J. 2019, 14, 4223−4228.

(4) (a) Niecke, E.; Fuchs, A.; Baumeister, F.; Nieger, M.; Schoeller, W. W. Angew. Chem., Int. Ed. Engl. 1995, 34, 555−557. (b) Sugiyama, H.; Ito, S.; Yoshifuji, M. Angew. Chem., Int. Ed. 2003, 42, 3802−3804. (c) Cox, H.; Hitchcock, P. B.; Lappert, M. F.; Pierssens, L. J. Angew. Chem., Int. Ed. 2004, 43, 4500−4504. (d) Cui, C.; Brynda, M.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2004, 126, 6510−6511. (e) Henke, P.; Pankewitz, T.; Klopper, W.; Breher, F.; Schnöckel, H. Angew. Chem., Int. Ed. 2009, 48, 8141−8145. (f) Wang, X.; Peng, Y.; Olmstead, M. M.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2009, 131, 14164−14165. (g) Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2011, 133, 12478−12481. (h) Beweries, T.; Kuzora, R.; Rosenthal, U.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2011, 50, 8974−8978. (i) Zhang, S.-H.; Xi, H.-W.; Lim, K. H.; Meng, Q.; Huang, M.-B.; So, C.-W. Chem. Eur. J. 2012, 18, 4258−4263. (j) Demeshko, S.; Godemann, C.; Kuzora, R.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2013, 52, 2105−2108. (k) Hinz, A.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2015, 54, 668−672.

(5) (a) Scheschkewitz, D.; Amii, H.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Science 2002, 295, 1880−1881. (b) Seierstad, M.; Kinsinger, C. R.; Cramer, C. J. Angew. Chem., Int. Ed. 2002, 41, 3894−3896. (c) Schoeller, W. W.; Rozhenko, A.; Bourissou, D.; Bertrand, G. Chem. Eur. J. 2003, 9, 3611−3617. (d) Cheng, M.-J.; Hu, C.-H. Mol. Phys. 2003, 101, 1319−1323. (e) Scheschkewitz, D.; Amii, H.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Angew. Chem., Int. Ed. 2004, 43, 585 −587. (f) Rodriguez, A.; Olsen, R. A.; Ghaderi, N.; Scheschkewitz, D.; Tham, F. S.; Mueller, L. J.; Bertrand, G. Angew. Chem., Int. Ed. 2004, 43, 4880−4883.

(6) (a) Amii, H.; Vranicar, L.; Gornitzka, H.; Bourissou, D.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 1344−1345. (b) Fuks, G.; Saffon, N.; Maron, L.; Bertrand, G.; Bourissou, D. J. Am. Chem. Soc. 2009, 131, 13681−13689.

(7) In a symposium, Kyushin et al. presented the synthesis of hexakis(tertbutyl)tetrasilabicyclo[1.1.0]butane with a planar structure. Kyushin, S.; Kurosaki, Y.; Matsumoto, N.; Matsumoto, H.; Kyomen, T.; Hanaya, M.; Kudo, T. Silicon−Silicon π Single Bond. In Abstract of the 53rd Symposium on Organometallic Chemistry, Osaka, Japan, September 8−9, 2006; Kinka Chemical Society Japan: Osaka, 2006, A102. (See also, Kyushin, S.; Kurosaki, Y.; Otsuka, K.; Imai, H.; Ishida, S.; Kyomen, T.; Hanaya, M.; Matsumoto, H. Nat. Commun. 2020, 11, 4009.)

(8) Fisher, Frenking, and co-workers reported an N-heterocyclic gallylene-bridged Ge2 species whose [Ge2Ga2] framework is topologically similar to that of 1. A theoretical investigation suggested that the central Ge−Ge bond is a π-bond with a weak σ-type interaction. See: Doddi, A.; Gemel, C.; Winter, M.; Fischer, R. A.; Goedecke, C.; Rzepa, H. S.; Frenking, G. Angew. Chem., Int. Ed. 2013, 52, 450−454.

(9) (a) Iwamoto, T.; Abe, T.; Sugimoto, K.; Hashizume, D.; Matsui, H.; Kishi, R.; Nakano, M.; Ishida, S. Angew. Chem., Int. Ed. 2019, 58, 4371−4375. (b) Nukazawa, T.; Kosai, T.; Honda, S.; Ishida, S.; Iwamoto, T. Dalton Trans. 2019, 48, 10874−10880. (c) Fujinami, M.; Seino, J.; Nukazawa, T.; Ishida, S.; Iwamoto, T.; Nakai, H. Chem. Lett. 2019, 48, 961 −964.

(10) (a) Masamune, S.; Kabe, Y.; Collins, S.; Williams, D. J.; Jones, R. J. Am. Chem. Soc. 1985, 107, 5552−5553. (b) Jones, R.; Williams, D. J.; Kabe, Y.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1986, 25, 173−174. (c) Takanashi, K.; Lee, V. Ya.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2007, 36, 1158−1159. (d) Ueba-Ohshima, K.; Iwamoto, T.; Kira, M. Organometallics 2008, 27, 320−323. (e) Iwamoto, T.; Akasaka, N.; Ishida, S. Nat. Commun. 2014, 5, 5353.

(11) (a) Dabish, T.; Schoeller, J. Chem. Soc., Chem. Commun. 1986, 896−898. (b) Schoeller, W. W.; Dabisch, T.; Busch, T. Inorg. Chem. 1987, 26, 4383−4389. (c) Schleyer, P. v. R.; Sax, A. F.; Kalcher, J.; Janoschek, R. Angew. Chem., Int. Ed. Engl. 1987, 26, 364−366. (d) Collins, S.; Dutler, R.; Rauk, A. J. Am. Chem. Soc. 1987, 109, 2564−2569. (e) Nagase, S.; Kudo, T. J. Chem. Soc., Chem. Commun. 1988, 54−56. (f) Boatz, J. A.; Gordon, M. S. J. Phys. Chem. 1988, 92, 3037−3042. (g) Boatz, J. A.; Gordon, M. S. J. Phys. Chem. 1989, 93, 2888−2891. (h) Müller, T. In Organosilicon Chemistry IV; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, Germany, 2000; pp 110−116. (i) Koch, R.; Bruhn, T.; Weidenbruch, M. J. Mol. Struct.: THEOCHEM 2004, 680, 91−97. (j) Konno, Y.; Kudo, T.; Sakai, S. Theor. Chem. Acc. 2011, 130, 371−383. (k) Kira, M. Organometallics 2014, 33, 644−652.

(12) Compound 2 is stable at room temperature but decomposes after 5 days at 80 °C in the dark to unexpectedly form 1 (46%) and other unidentified products.

(13) Wiberg, N.; Schuster, H.; Simon, A.; Peters, K. Angew. Chem., Int. Ed. Engl. 1986, 25, 79−80.

(14) Uchiyama, K.; Nagendran, S.; Ishida, S.; Iwamoto, T.; Kira, M. J. Am. Chem. Soc. 2007, 129, 10638−10639.

(15) A linear relationship was observed between the experimentally observed isotropic chemical shift (δobs) for several mono-iodinated silicon compounds and the corresponding calculated chemical shift (δcalc) obtained at the M06L/6-311+G(2df,p) [H,C,Si], SDD [I] level of theory (δobs = 1.011δcalc−40.8, R 2 = 0.990) (Figure 3-14 and Table 3-19). The 29Si NMR chemical shifts predicted for 2′c and 2′p in the main text were corrected using this equation with raw δcalc values of 139.1 (2′c) and 191.0 (2′p).

(16) According to the IUPAC definition, a π-bond contains a nodal plane that includes the internuclear bond axis. See: IUPAC. σ, π (Sigma, Pi). In Compendium of Chemical Terminology (the “Gold Book”), 2nd ed. [Online]; McNaught, A. D., Wilkinson, A., Eds.; Blackwell, 1997. DOI: 10.1351/goldbook

(17) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. NBO 7.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2018.

(18) The deformation of the bicyclic ring relative to the planar structure in the parent tetrasilabicyclo[1.1.0]butane has been qualitatively explained by a second-order Jahn− Teller distortion. For details, see ref 11k.

(19) We did not observe a significant change in the UV-vis spectrum at lower temperatures (Figure 3-12).

(20) A structure similar to 3S was not located for 4 or 5 as a local minimum.11

(21) Although the origin of the difference between the relative stabilities of 2′p and 2′c remains unclear at this point, it may originate from a balance among the bonding interactions between the bridgehead Si atoms [d = 2.501 Å (2′c), 2.609 Å (2′p)], the strain originating from the Si(bridgehead)−Si(bridge)−Si(bridgehead) angle [α = 64.5° (2′c), 68.0° (2′p)], and the arrangement of the bulky silacyclopentane rings at the bridge positions.

(22) In previously reported theoretical studies, the introduction of bulky substituents at the bridgehead position resulted in destabilization of structures similar to 3L and 3TP with acute bond angles (θ ≈ 100°) and the stabilization of structures similar to 3S; 11f,g,i these predictions are consistent with the reported structures of such species with bulky bridgehead groups.10

(23) During checking the galley proof of the final published version, we were informed that Scheschkewitz et al. obtained a tetrasilicon analogue of a cyclobutane-1,3-diyl. Yildiz, C. B.; Leszczyńska, K. I.; Gonzalez- Gallardo, S.; Zimmer, M.; Azizoglu, A.; Biskup, T.; Kay, C. W. M.; Huch, V.; Rzepa, H. S.; Scheschkewitz, D. Angew. Chem., Int. Ed. 2020, 59, 15087−15092.

(24) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176−2179.

(25) Sheldrick, G. M. SADABS, Empirical Absorption Correction Program; Göttingen, Germany, 1996.

(26) Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3−8.

(27) Wakita, K. Yadokari-XG: Software for Crystal Structure Analyses, 2001; Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. J. Crystallogr. Soc. Jpn., 2009, 51, 218−224.

(28) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

(29) GRRM14, Maeda, S.; Harabuchi, Y.; Osada, Y.; Taketsugu, T.; Morokuma, K.; Ohno, K. see https://iqce.jp/GRRM/ (accessed date March 21, 2020); Maeda, S.; Ohno, K.; Morokuma, K. Phys. Chem. Chem. Phys. 2013, 15, 3683−3701.

(30) NBO 7.0, Glendening, E. D.; Badenhoop, J, K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison (2018).

(31) Olah, G. A.; Field, L. D. Organometallics 1982, 1, 1485−1487.

(32) (Me3Si)3SiI was prepared according to the published procedure and the 29Si NMR spectrum was recorded measured in C6D6. Bürger, H.; Kilian, W.; Burczyk, K. J. Organomet. Chem. 1970, 21, 291−301.

(33) Hartmann, M.; Haji-Abdi, A.; Abersfelder, K.; Haycock, P. R.; White, A. J. P.; Scheschkewitz, D. Dalton Trans. 2010, 39, 9288−9295.

4-5. Reference

(1) For reviews of interconversion among C4R6 isomers, see: (a) W. Leigh, Chem. Rev. 1993, 93, 487–505; (b) W. R. Dolbier Jr., H. Koroniak, K. N. Houk, C. Sheu, Acc. Chem. Res. 1996, 29, 471–477.

(2) (a) W. Mahler, J. Am. Chem. Soc. 1962, 84, 4600–4601; (b) H. M. Frey, I. D. R. Stevens, Trans. Faraday Soc. 1965, 61, 90–94; (c) W. v. E. Doering, J. F. Coburn Jr., Tetrahedron Lett. 1965, 991–995; (d) E. P. Blanchard Jr., A. Cairncross, J. Am. Chem. Soc. 1966, 88, 487–495; (e) K. B. Wiberg, J. M. Lavanish, J. Am. Chem. Soc. 1966, 88, 5272–5273; (f) G. L. Closs, P. E. Pfeffer, J. Am. Chem. Soc. 1968, 90, 2452–2453; (g) K. A. Nguyen, M. S. Gordon, J. Am. Chem. Soc. 1995, 117, 3835–3847; (h) A. Kinal, P. Piecuch, J. Phys. Chem. A 2007, 111, 734–742; (i) R. Berner, A. Lüchow, J. Phys. Chem. A 2010, 114, 13222–13227.

(3) For reviews on heavy element analogues of bicyclo[1.1.0]butane, see: (a) H. Grützmacher, F. Breher, Angew. Chem., Int. Ed. 2002, 41, 4006–4011; (b) F. Breher, Coord. Chem. Rev. 2007, 251, 1007–1043.

(4) For reviews on bicyclo[1.1.0]butanes, see: (a) K. B. Wiberg, Adv. Alicyclic Chem. 1968, 2, 185–254; (b) H. K. Hall Jr., A. B. Padia, J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 625–635.

(5) A number of silabicyclo[1.1.0]butanes have been reported. For tetrasilabicyclo[1.1.0]butanes, see: (a) S. Masamune, Y. Kabe, S. Collins, D. J. Williams, R. Jones, J. Am. Chem. Soc. 1985, 107, 5552–5553; (b) R. Jones, D. J. Williams, Y. Kabe, S. Masamune, Angew. Chem., Int. Ed. Engl. 1986, 25, 173–174; (c) S. Collins, J. A. Duncan, Y. Kabe, S. Murakami, S. Masamune, Tetrahedron Lett. 1985, 26, 2837–2840; (d) M. Kira, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1996, 118, 10303–10304; (e) T. Iwamoto, M. Kira, Chem. Lett. 1998, 277–278; (f) K. Takanashi, V. Ya. Lee, M. Ichinohe, A. Sekiguchi, Chem. Lett. 2007, 36, 1158–1159; (g) K. Ueba-Ohshima, T. Iwamoto, M. Kira, Organometallics 2008, 27, 320–323; (h) K. Takanashi, V. Ya. Lee, T. Yokoyama, A. Sekiguchi, J. Am. Chem. Soc. 2009, 131, 916–917; (i) T. Iwamoto, N. Akasaka, S. Ishida, Nat. Commun. 2014, 5, 5353. For 1,2,3-trisilabicyclo[1.1.0]butanes, see: (j) V. Ya. Lee, H. Yasuda, A. Sekiguchi, J. Am. Chem. Soc. 2007, 129, 2436–2437; (k) V. Ya. Lee, S. Miyazaki, H. Yasuda, A. Sekiguchi, J. Am. Chem. Soc. 2008, 130, 2758–2759. For 2,4-disilabicyclo [1.1.0]butanes, see: (l) G. Fritz, S. Wartanessian, E. Matern, W. Hönle, H. G. v. Schnering, Z. Anorg. Allg. Chem. 1981, 475, 87–108; (m) G. Fritz, J. Thomas, J. Organomet. Chem. 1984, 271, 107–127; (n) W. Ando, T. Shiba, T. Hidaka, K. Morihashi, O. Kikuchi, J. Am. Chem. Soc. 1997, 119, 3629–3630. For 1,3-disila bicyclo[1.1.0]butane, see: (o) T. Iwamoto, D. Yin, C. Kabuto, M. Kira, J. Am. Chem. Soc. 2001, 123, 12730–12731. For 1,3-diphospha-2,4-disilabicyclo[1.1.0]butanes, see: (p) M. Driess, A. D. Fanta, D. R. Powell, R. West, Angew. Chem., Int. Ed. Engl. 1989, 28, 1038–1040; (q) M. Driess, H. Pritzkow, M. Reisgys, Chem. Ber. 1991, 124, 1923–1929; (r) A. D. Fanta, M. Driess, D. R. Powell, R. West, J. Am. Chem. Soc. 1991, 113, 7806–7808; (s) M. Driess, H. Pritzkow, S. Rell, R. Janoschek, Inorg. Chem. 1997, 36, 5212–5217. For 1,3-diarsa-2,4-disilabicyclo[1.1.0]butane, see: (t) M. Driess, R. Janoschek, H. Pritzkow, Angew. Chem., Int. Ed. Engl. 1992, 31, 460–462. For 1,2,3-triphospha-4-silabicyclo[1.1.0]butane, see: (u) M. Driess, Angew. Chem., Int. Ed. Engl. 1991, 30, 1022–1024. For 2-phospha-4-silabicyclo[1.1.0]butane, see: (v) J. C. Slootweg, F. J. J. de Kanter, M. Schakel, A. W. Ehlers, B. Gehrhus, M. Lutz, A. M. Mills, A. L. Spek, K. Lammertsma, Angew. Chem., Int. Ed. 2004, 43, 3474–3477.

(6) Theoretical studies of isomerisation of silabicyclo[1.1.0]butanes: (a) T. Müller, in Organosilicon Chemistry IV, ed. N. Auner and J. Weis, Wiley-VCH, Weinheim, 2000, pp. 110–116; (b) J. C. Slootweg, A. W. Ehlers, K. Lammertsma, J. Mol. Model. 2006, 12, 531–536; (c) Y. Konno, T. Kudo, S. Sakai, Theor. Chem. Acc. 2011, 130, 371–382.

(7) C. B. Yildiz, K. I. Leszcyńska, S. González-Gallardo, M. Zimmer, A. Azizoglu, T. Biskup, C. W. M. Kay, V. Huch, H. S. Rzepa, D. Scheschkewitz, Angew. Chem., Int. Ed. 2020, 59, 15087–15092.

(8) (a) W. W. Schoeller, T. Dabisch, T. Busch, Inorg. Chem. 1987, 26, 4383–4389; (b) P. v. R. Schleyer, A. F. Sax, J. Kalcher, R. Janoschek, Angew. Chem., Int. Ed. Engl. 1987, 26, 364–366; (c) J. A. Boatz, M. S. Gordon, J. Phys. Chem. 1988, 92, 3037–3042; (d) J. A. Boatz, M. S. Gordon, J. Phys. Chem. 1989, 93, 2888–2891; (e) R. Koch, T. Bruhn, M. Weidenbruch, J. Mol. Struct.: THEOCHEM 2004, 680, 91–97; (f) M. Kira, Organometallics 2014, 33, 644–652. See also ref. 6a and c.

(9) (a) T. Iwamoto, T. Abe, K. Sugimoto, D. Hashizume, H. Matsui, R. Kishi, M. Nakano, S. Ishida, Angew. Chem., Int. Ed. 2019, 58, 4371–4375; (b) T. Nukazawa, T. Kosai, S. Honda, S. Ishida, T. Iwamoto, Dalton Trans. 2019, 48, 10874–10880.

(10) T. Nukazawa, T. Iwamoto, J. Am. Chem. Soc. 2020, 142, 9920–9924.

(11) Unfortunately, we have failed to obtain the corresponding 1,3-dibromo derivative from the reaction of 1 with bromoalkanes such as CHBr3, CBr4, (CH2Br)2, and (CHBr2)2.

(12) S. Kyushin, Y. Kurosaki, K. Otsuka, H. Imai, S. Ishida, T. Kyomen, M. Hanaya, H. Matsumoto, Nat. Commun. 2020, 11, 4009.

(13) As 4 undergoes facile isomerisation to cyclotrisilene 6 in solution, the 29Si NMR spectral data of 4 and 6 were taken from the 29Si NMR spectrum of the equilibrium mixture of 4 and 6 recorded at 60 °C and assigned according to the 1H– 29Si HMBC spectrum.

(14) (a) K. Leszczyńska, K. Abersfelder, A. Mix, B. Neumann, H.-G. Stammler, M. J. Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem., Int. Ed. 2012, 51, 6785–6788; (b) M. J. Cowley, V. Huch, H. S. Rzepa, D. Scheschkewitz, Nat. Chem. 2013, 5, 876–879.

(15) For studies on cyclotrisilenes, see: (a) T. Iwamoto, C. Kabuto, M. Kira, J. Am. Chem. Soc. 1999, 121, 886–887; (b) M. Ichinohe, T. Matsuno, A. Sekiguchi, Angew. Chem., Int. Ed. 1999, 38, 2194–2196; (c) T. Iwamoto, M. Tamura, C. Kabuto, M. Kira, Science 2000, 290, 504–506; (d) T. Iwamoto, M. Tamura, C. Kabuto, M. Kira, Organometallics 2003, 22, 2342–2344; (e) T. Kosai, S. Nishimura, N. Hayakawa, T. Matsuo, T. Iwamoto, Chem. Lett. 2019, 48, 1168–1170; (f) T. Koike, S. Honda, S. Ishida, T. Iwamoto, Organometallics 2020, 39, 4149–4152, see also ref. 14a.

(16) (a) M. Zirngast, M. Flock, J. Baumgartner, C. Marschner, J. Am. Chem. Soc. 2008, 130, 17460–17470; (b) J. I. Schweizer, M. G. Scheibel, M. Diefenbach, F. Neumeyer, C. Würtele, N. Kulminskaya, R. Linser, N. Auner, S. Schneider, M. C. Holthausen, Angew. Chem., Int. Ed. 2016, 55, 1782–1786; (c) M. W. Stanford, J. I. Schweizer, M. Menche, G. S. Nichol, M. C. Holthausen, M. J. Cowley, Angew. Chem., Int. Ed. 2019, 58, 1329–1333; (d) I. Balatoni, J. Hlina, R. Zitz, A. Pocheim, J. Baumgartner, C. Marschner, Inorg. Chem. 2019, 58, 14185–14192. See also ref. 5i.

(17) In the 1H NMR spectrum of a mixture of 4 and 6, the signals due to four SiMe3 groups (36 H) of 6 were substantially broadened and overlapped with that due to eight SiMe3 groups (72H) of 4 (Figure 4-34). Assuming that only the signals of 4 and 6 were overlapped in this region, the equilibrium constants Keq (= [6]/[4]) at 302–333 K were roughly estimated using the integral ratios (Table 4-23). From the Keq, the thermodynamic parameters for the isomerization of 4 to 6 are calculated to be ΔH = +14.6 ± 2.9 kJ mol−1 and ΔS = +49 ± 9 J K−1 mol−1 (Figure 4-35) which are consistent with the calculated relative energy and free energy.

(18) For reviews on bond stretch isomerisation, see: G. Parkin, Chem. Rev. 1993, 93, 887–911. See also ref. 3.

(19) For concepts of bond stretch isomerism, see: (a) W.-D. Stohrer, R. Hoffmann, J. Am. Chem. Soc. 1972, 94, 779–786; (b) W.-D. Stohrer, R. Hoffmann, J. Am. Chem. Soc. 1972, 94, 1661–1668.

(20) The isomerisation of a 2,3-disilabutadiene to a long bond isomer of 1,3-disila bicyclobutane was reported. See, D. Motomatsu, S. Ishida, K. Ohno, T. Iwamoto, Chem. Eur. J. 2014, 20, 9424–9430.

(21) The HOMO and HOMO−1 of 8opt are mainly localized on the central chlorinated Si atoms, while LUMO and LUMO+1 are localized on the terminal Si atoms. The orbital feature suggests the presence of two polarized R2Siδ+–Siδ−Cl bonds, which is consistent with the natural atomic orbital (NPA) charges of the silicon atoms [+1.4 and 0.0 for terminal and central Si atoms].

(22) For studies on disilene–silylsilylene interconversion, see: (a) W. D. Wulff, W. F. Goure, T. J. Barton, J. Am. Chem. Soc. 1978, 100, 6236–6238; (b) H. Sakurai, Y. Nakadira, H. Sakaba, Organometallics 1983, 2, 1484–1486; (c) G. Maier, H. P. Reisenauer, J. Glatthaar, Chem. Eur. J. 2002, 8, 4383–4391; (d) M. Ichinohe, R. Kinjo, A. Sekiguchi, Organometallics 2003, 22, 4621–4623; (e) K. Abersfelder, D. Scheschkewitz, J. Am. Chem. Soc. 2008, 130, 4114–4121; (f) T. Sasamori, K. Hironaka, Y. Sugiyama, N. Takagi, S. Nagase, Y. Hosoi, Y. Furukawa, N. Tokitoh, J. Am. Chem. Soc. 2008, 130, 13856–13857; (g) T. Agou, Y. Sugiyama, T. Sasamori, H. Sakai, Y. Furukawa, N. Takagi, J.-D. Guo, S. Nagase, D. Hashizume, N. Tokitoh, J. Am. Chem. Soc. 2012, 134, 4120–4123; (h) X.-Q. Xiao, H. Zhao, Z. Xu, G. Lai, X.-L. He, Z. Li, Chem. Commun. 2013, 49, 2706–2708; (i) T. Kosai, T. Iwamoto, J. Am. Chem. Soc. 2017, 139, 18146–18149; (j) T. Kosai, T. Iwamoto, Chem. Eur. J. 2018, 24, 7774–7780; (k) D. Reiter, R. Holzner, A. Porzelt, P. J. Altmann, P. Frisch, S. Inoue, J. Am. Chem. Soc. 2019, 141, 13536–13546. See also ref. 16b.

(23) In contrast to 4, 5 does not exhibit similar interconversion. As 5 slowly decomposes to bicyclo[1.1.0]tetrasil-1(3)-ene 1 and unidentified products at room temperature, the activation barrier for the decomposition may be lower in energy than those of the rate-controlling step of the similar interconversion.

(24) M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722–9723.

(25) In the reaction of 1 with CCl4, intermediate 8 should be involved in the formation of acyclic tetrasilane 3.

(26) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179.

(27) G. M. Sheldrick, SADABS, Empirical Absorption Correction Program; Göttingen, Germany, 1996.

(28) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.

(29) K. Wakita, Yadokari-XG: Software for Crystal Structure Analyses, 2001; Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses; C. Kabuto, S. Akine, T. Nemoto, E. Kwon, J. Crystallogr. Soc. Jpn., 2009, 51, 218–224.

(30) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.

(31) GRRM14; (a) S. Maeda, Y. Harabuchi, Y. Osada, T. Taketsugu, K. Morokuma, K. Ohno, see https://iqce.jp/GRRM/, accessed date March 21, 2020; (b) S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem. Phys. 2013, 15, 3683–3701.

(32) Software to optimize reaction paths along the user’s expected ones, HPC Systems Inc., http://www.hpc.co.jp/chem/react1.html.

(33) (a) H. Jónsson, G. Mills, K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, ed. B. J. Berne, G. Ciccotti, D. F. Coker, World Scientific, 1998, p. 385; (b) G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978.

(34) (a) K. Fukui, Acc. Chem. Res. 1981, 14, 363–368; (b) K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys. 1977, 66, 2153; (c) M. Page, J. W. McIver, J. Chem. Phys. 1988, 88, 922; (d) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.

(35) E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, NBO 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2018.

5-5. Reference

(1) For recent reviews on compounds with unsupported single π-bonds, see: (a) M. Abe, Chem. Rev. 2013, 113, 7011–7088; (b) M. Abe, R. Akisaka, Chem. Lett. 2017, 46, 1586–1592; For a study on compounds that contain multiple π-bonds unsupported by an underlying σ-bond, see: (c) E. D. Jemmis, B. Pathak, R. B. King, H. F. Schaefer, Chem. Commun. 2006, 2164–2166.

(2) (a) W. Adam, W. T. Borden, C. Burda, H. Foster, T. Heidenfelder, M. Heubes, D. A. Hrovat, F. Kita, S. B. Lewis, D. Scheutzow, J. Wirz, J. Am. Chem. Soc. 1998, 120, 593–594; (b) M. Abe, W. Adam, W. M. Nau, J. Am. Chem. Soc. 1998, 120, 11304–11310; (c) Y. Harada, Z. Wang, S. Kumashiro, S. Hatano, M. Abe, Chem. Eur. J. 2018, 24, 14808–14815; (d) R. Akisaka, M. Abe, Chem. Asian J. 2019, 14, 4223–4228; (e) Z. Wang, R. Akisaka, S. Yabumoto, T. Nakagawa, S. Hatano, M. Abe, Chem. Sci. 2021, 12, 613–625; ( f ) Y. Miyazawa, Z. Wang, M. Matsumoto, S. Hatano, I. Antol, E. Kayahara, S. Yamago, M. Abe, J. Am. Chem. Soc. 2021, 143, 7426–7439. See also, ref. 1.

(3) (a) D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, Science 2002, 295, 1880–1881; (b) M. Seierstad, C. R. Kinsinger, C. J. Cramer, Angew. Chem., Int. Ed. 2002, 41, 3894–3896; (c) W. W. Schoeller, A. Rozhenko, D. Bourissou, G. Bertrand, Chem. Eur. J. 2003, 9, 3611–3617; (d) M.-J. Cheng, C.-H. Hu, Mol. Phys. 2003, 101, 1319–1323; (e) D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, Angew. Chem., Int. Ed. 2004, 43, 585–587; (f) A. Rodriguez, F. S. Tham, W. W. Schoeller, G. Bertrand, Angew. Chem., Int. Ed. 2004, 43, 4876–4880; (g) A. Rodriguez, R. A. Olsen, N. Ghaderi, D. Scheschkewitz, F. S. Tham, L. J. Mueller, G. Bertrand, Angew. Chem., Int. Ed. 2004, 43, 4880–4883.

(4) (a) T. Nukazawa, T. Kosai, S. Honda, S. Ishida, T. Iwamoto, Dalton Trans. 2019, 48, 10874–10880; (b) T. Nukazawa, T. Iwamoto, J. Am. Chem. Soc. 2020, 142, 9920–9924; (c) T. Nukazawa, T. Iwamoto, Dalton Trans. 2020, 49, 16728–16735.

(5) C. B. Yildiz, K. I. Leszcyńska, S. González-Gallardo, M. Zimmer, A. Azizoglu, T. Biskup, C. W. M. Kay, V. Huch, H. S. Rzepa, D. Scheschkewitz, Angew. Chem., Int. Ed. 2020, 59, 15087–15092.

(6) (a) S. Kyushin, Y. Kurosaki, K. Otsuka, H. Imai, S. Ishida, T. Kyomen, M. Hanaya, H. Matsumoto, Nat. Commun. 2020, 11, 4009; (b) C. Foroutan-Nejad, Nat. Commun. 2021, 12, 4037; (c) S. Kyushin, Y. Kurosaki, K. Otsuka, H. Imai, S. Ishida, T. Kyomen, M. Hanaya, H. Matsumoto, Nat. Commun. 2021, 12, 4036.

(7) M. Kaftory, M. Kapon, M. Botoshansky, in The Chemistry of Organic Silicon Compounds, ed. Z. Rappoport, Y. Apeloig, Wiley, Chichester, 1998, vol. 2, pp. 181–265.

(8) (a) S. Masamune, Y. Kabe, S. Collins, D. J. Williams, R. Jones, J. Am. Chem. Soc. 1985, 107, 5552–5553; (b) R. Jones, D. J. Williams, Y. Kabe, S. Masamune, Angew. Chem., Int. Ed. Engl. 1986, 25, 173–174; (c) K. Takanashi, V. Ya Lee, M. Ichinohe, A. Sekiguchi, Chem. Lett. 2007, 36, 1158–1159; (d) K. Ueba-Ohshima, T. Iwamoto, M. Kira, Organometallics 2008, 27, 320–323; (e) T. Iwamoto, N. Akasaka, S. Ishida, Nat. Commun. 2014, 5, 5353.

(9) K. Uchiyama, S. Nagendran, S. Ishida, T. Iwamoto, M. Kira, J. Am. Chem. Soc. 2007, 129, 10638–10639.

(10) During the preparation of this manuscript, Scheschkewitz et al. reported the metathesis reaction of 1-chloro germadisilabicyclo[1.1.0]butane with nucleophiles; for details, see: P. K. Majhi, M. Zimmer, B. Morgenstern, D. Scheschkewitz, J. Am. Chem. Soc. 2021, 143, 8981–8986.

(11) In the crystalline state, apparent π–π interactions were not observed for 4 (the shortest intermolecular CPh∙∙∙CPh distance: 3.75 Å).

(12) J. Bruckmann, C. Krüger, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53, 1845–1846.

(13) T. Sato, Y. Mizuhata, N. Tokitoh, Chem. Commun. 2010, 46, 4402–4404.

(14) For details of the calculations, see the Experimental Section.

(15) The values of the 29Si NMR resonances were obtained from the 1H29Si HMBC 2D NMR spectra in C7D8.

(16) In addition to 5c, some conformers of 5 were located at local minima but at higher Gibbs energies than 5p; for details, see the Experimental Section.

(17) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179.

(18) G. M. Sheldrick, SADABS, Empirical Absorption Correction Program; Göttingen, Germany, 1996.

(19) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.

(20) K. Wakita, Yadokari-XG: Software for Crystal Structure Analyses, 2001; Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses; C. Kabuto, S. Akine, T. Nemoto, E. Kwon, J. Crystallogr. Soc. Jpn., 2009, 51, 218–224.

(21) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.

(22) GRRM14; (a) S. Maeda, Y. Harabuchi, Y. Osada, T. Taketsugu, K. Morokuma, K. Ohno, see https://iqce.jp/GRRM/, accessed date March 21, 2020; (b) S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem. Phys. 2013, 15, 3683–3701.

(23) NBO 7.0, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2018).

2-5. Reference and Notes

(1) (a) Wiberg, K. B.; Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239−5240. (b) Levin, M. D.; Kaszynski, P.; Michl, J. Chem. Rev. 2000, 100, 169−234. (c) Nied, D.; Breher, F. Chem. Soc. Rev. 2011, 40, 3455−3466. (d) Dilmaç, A. M.; Spuling, E.; de Meijere, A.; Bräse, S. Angew. Chem., Int. Ed. 2017, 56, 5684−5718.

(2) (a) Wiberg, K. B. Acc. Chem. Res. 1984, 17, 379−386. (b) Iwamoto, T.; Ishida, S. Chem. Lett. 2014, 43, 164−170. (c) Heider, Y.; Scheschkewitz, D. Dalton Trans. 2018, 47, 7104−7112. (d) Heider, Y.; Poitiers, N. E.; Willmes, P.; Leszczyńska, K. I.; Huch, V.; Scheschkewitz, D. Chem. Sci. 2019, 10, 4523−4530. (e) Heider, Y.; Scheschkewitz, D. Chem. Rev. 2021, 121, 9674−9718.

(3) (a) Szeimies, G.; Harnisch, J.; Baumgärtel, O. J. Am. Chem. Soc. 1977, 99, 5183−5184. (b) Szeimies-Seebach, U.; Harnisch, J.; Szeimies, G.; Van Meerssche, M.; Germain, G.; Declerq, J.-P. Angew. Chem., Int. Ed. Engl. 1978, 17, 848−850. (c) Zoch, H.-G.; Szeimies, G.; Romer, R.; Schmitt, R. Angew. Chem., Int. Ed. Engl. 1981, 20, 877−878. (d) Schlüter, A.-D.; Harnisch, H.; Harnisch, J.; Szeimies-Seebach, U.; Szeimies, G. Chem. Ber. 1985, 118, 3513−3528.

(4) (a) Iwamoto, T.; Abe, T.; Sugimoto, K.; Hashizume, D.; Matsui, H.; Kishi, R.; Nakano, M.; Ishida, S. Angew. Chem., Int. Ed. 2019, 58, 4371−4375. (b) Nukazawa, T.; Kosai, T.; Honda, S.; Ishida, S.; Iwamoto, T. Dalton Trans. 2019, 48, 10874−10880. (c) Fujinami, M.; Seino, J.; Nukazawa, T.; Ishida, S.; Iwamoto, T.; Nakai, H. Chem. Lett. 2019, 48, 961−964.

(5) Nied, D.; Köppe, R.; Klopper, W.; Schnöckel, H.; Breher, F. J. Am. Chem. Soc. 2010, 132, 10264−10265.

(6) (a) Nukazawa, T.; Iwamoto, T. J. Am. Chem. Soc. 2020, 142, 9920−9924. (b) Nukazawa, T.; Iwamoto, T. Dalton Trans. 2020, 49, 16728−16735. See also ref 4a and 4b.

(7) As an example of a functionalized cyclotrisilene derivative, the generation of a cyclotrisilenyl radical has been suggested as an intermediate in the reaction of a cyclotrisilene with disilenides. See: Leszczyńska, K.; Abersfelder, K.; Majumdar, M.; Neumann, B.; Stammler, H.-G.; Rzepa, H. S.; Jutzi, P.; Scheschkewitz, D. Chem. Commun. 2012, 48, 7820−7822.

(8) Very recently, Scheschkewitz et al. have reported cyclotrimetallenes ligated by a nickel. See: (a) Majhi, P. K.; Zimmer, M.; Morgenstern, B.; Scheschkewitz, D. J. Am. Chem. Soc. 2021, 143, 8981−8986. (b) Majhi, P. K.; Zimmer, M.; Morgenstern, B.; Huch, V.; Scheschkewitz, D. J. Am. Chem. Soc. 2021, 143, 13350−13357.

(9) West et al. have reported that the reaction of tetramesityldisilene with LiAlH4 provided the corresponding 1,2-dihydridodisilane. See: West, R. Science 1984, 225, 1109−1114.

(10) When 1a was treated with 3 equiv of LiAlH4 in THF, a complex reaction mixture was obtained, suggesting that 2 reacts with LiAlH4.

(11) (a) Teclé, B.; Ilsley, W. H.; Oliver, J. P. Organometallics 1982, 1, 875−877. (b) Dias, H. V. R.; Olmstead, M. M.; Ruhlandt-Senge, K.; Power, P. P. J. Organomet. Chem. 1993, 462, 1−6. (c) Heine, A.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Inorg. Chem. 1993, 32, 2694−2698.

(12) (a) Scheschkewitz, D. Angew. Chem., Int. Ed. 2004, 43, 2965−2967. (b) Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Organometallics 2004, 23, 3088−3090. (c) Inoue, S.; Ichinohe, M.; Sekiguchi, Chem. Lett. 2005, 34, 1564−1565. (d) Abersfelder, K.; Güclü, D.; Scheschkewitz, D. Angew. Chem., Int. Ed. 2006, 45, 1643−1645. (e) Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Silicon Chem. 2007, 3, 111−116. (f) Iwamoto, T.; Kobayashi, M.; Uchiyama, K.; Sasaki, S.; Nagendran, S.; Isobe, H.; Kira, M. J. Am. Chem. Soc. 2009, 131, 3156−3157. (g) Tian, M.; Zhang, J.; Yang, H.; Cui, C. J. Am. Chem. Soc. 2020, 142, 4131−4135. (h) Yasuda, H.; Lee, V. Ya.; Sekiguchi, A. J. Am. Chem. Soc. 2009, 131, 6352−6353.

(13) Pinchuk, D.; Mathew, J.; Kaushansky, A.; Bravo-Zhivotovskii, D.; Apeloig, Y. Angew. Chem., Int. Ed. 2016, 55, 10258−10262.

(14) For studies on cyclotrisilenes, see: (a) Iwamoto, T.; Kabuto, C.; Kira, M. J. Am. Chem. Soc. 1999, 121, 886−887. (b) Ichinohe, M.; Matsuno, T.; Sekiguchi, A. Angew. Chem., Int. Ed. 1999, 38, 2194−2196. (c) Iwamoto, T.; Tamura, M.; Kabuto, C.; Kira, M. Science 2000, 290, 504−506. (d) Iwamoto, T.; Tamura, M.; Kabuto, C.; Kira, M. Organometallics 2003, 22, 2342−2344. (e) Wiberg, N.; Vasisht, S. K.; Fischer, G.; Mayer, P. Z. Anorg. Allg. Chem. 2004, 630, 1823−1828. (f) Leszczyńska, K.; Abersfelder, K.; Mix, A.; Neumann, B.; Stammler, H.-G.; Cowley, M. J.; Jutzi, P.; Scheschkewitz, D. Angew. Chem., Int. Ed. 2012, 51, 6785−6788. (g) Kosai, T.; Nishimura, S.; Hayakawa, N.; Matsuo, T.; Iwamoto, T. Chem. Lett. 2019, 48, 1168−1170. (h) Koike, T.; Honda, S.; Ishida, S.; Iwamoto, T. Organometallics 2020, 39, 4149−4152. (i) Honda, S.; Sugawara, R.; Ishida, S.; Iwamoto, T. J. Am. Chem. Soc. 2021, 143, 2649−2653.

(15) Optimized structure of 2′opt was calculated at B3LYP-D3/6-311G(d) level of theory.

(16) (a) Iwamoto, T.; Sakurai, H.; Kira, M. Bull. Chem. Soc. Jpn. 1998, 71, 2741−2747. (b) Ichinohe, M.; Kinjo, R.; Sekiguchi, A. Organometallics 2003, 22, 4621−4623.

(17) Higher migratory aptitude of hydride has been reported for some unsaturated silicon compounds. See: (a) Yamaguchi, T.; Sekiguchi, A. J. Am. Chem. Soc. 2011, 133, 7352−7354. (b) Agou, T.; Sugiyama, Y.; Sasamori, T.; Sakai, H.; Furukawa, Y.; Takagi, N.; Guo, J.-D.; Nagase, S.; Hashizume, D.; Tokitoh, N. J. Am. Chem. Soc. 2012, 134, 4120−4123. For theoretical studies on hydride migration in unsaturated silicon compounds, see: (c) Nagase, S.; Kudo, T. J. Chem. Soc., Chem. Commun. 1984, 1392−1394. (d) Krogh-Jespersen, K. Chem. Phys. Lett. 1982, 93, 327−330. (e) Gordon, M. S.; Truong, T. N.; Bonderson, E. K. J. Am. Chem. Soc. 1986, 108, 1421−1427. (f) Ernst, M. C.; Sax, A. F.; Kalcher, J. Chem. Phys. Lett. 1993, 216, 189−193. (g) McCarthy, M. C.; Yu, Z.; Sari, L.; Schaefer, H. F., III; Thaddeus, P. J. Chem. Phys. 2006, 124, 074303. (h) Maier, G.; Reisenauer, H. P.; Glatthaar, J. Chem. Eur. J. 2002, 8, 4383−4391. (i) Dolgonos, G. Chem. Phys. Lett. 2008, 466, 11−15.

(18) Recrystallization from Et2O at −27 °C also provided orange crystals that exhibit a solvent-separated ion pair structure (see Figure 6-45).

(19) (a) Masamune, S.; Kabe, Y.; Collins, S.; Williams, D. J.; Jones, R. J. Am. Chem. Soc. 1985, 107, 5552−5553. (b) Jones, R.; Williams, D. J.; Kabe, Y.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1986, 25, 173−174. (c) Takanashi, K.; Lee, V. Ya.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2007, 36, 1158−1159. (d) Ueba-Ohshima, K.; Iwamoto, T.; Kira, M. Organometallics 2008, 27, 320−323. (e) Iwamoto, T.; Akasaka, N.; Ishida, S. Nat. Commun. 2014, 5, 5353.

(20) (a) Iwamoto, T.; Yin, D.; Kobayashi, A.; Tamura, M.; Motomatsu, D.; Akasaka, N.; Yokouchi, Y.; Ishida, S.; Kira, M. Organometallics 2021, 40, 2557−2566. (b) Lee, V. Ya.; Yokoyama, T.; Takanashi, K.; Sekiguchi, Chem. Eur. J. 2009, 15, 8401−8404. For studies on metalsubstituted cyclotrimetallanes, see: (c) Ichinohe, M.; Toyoshima, M.; Kinjo, R.; Sekiguchi, A. J. Am. Chem. Soc. 2003, 125, 13328−13329. (d) Abersfelder,K.; Scheschkewitz, D. J. Am. Chem. Soc. 2008, 130, 4114−4121. (e) Lee, V. Ya.; Horiguchi, S.; Gapurenko, O. A.; Minyaev, R. M.; Minkin, V. I.; Gornitzka, H.; Sekiguchi, A. Eur. J. Inorg. Chem. 2019, 4224−4227. (f) Heider, Y.; Willmes, P.; Huch, V.; Zimmer, M.; Scheschkewitz, D. J. Am. Chem. Soc. 2019, 141, 19498−19504. (g) Guddorf, B. J.; Feldt, M.; Hepp, A.; Daniliuc, C. D.; Lips, F. Organometallics 2020, 39, 4387−4394. (h) Lee, V. Ya.; Sakai, R.; Takanashi, K.; Gapurenko, O. A.; Minyaev, R. M.; Gornitzka, H.; Sekiguchi, A. Angew. Chem., Int. Ed. 2021, 60, 3951−3955.

(21) (a) Hartmann, M.; Haji-Abdi, A.; Abersfelder, K.; Haycock, P. R.; White, A. J. P.; Scheschkewitz, D. Dalton Trans. 2010, 39, 9288−9295. (b) Willmes, P.; Cowley, M. J.; Hartmann, M.; Zimmer, M.; Huch, V.; Scheschkewitz, D. Angew. Chem., Int. Ed. 2014, 53, 2216−2220. (c) Izod, K.; Evans, P.; Waddell, P. G. Angew. Chem., Int. Ed. 2017, 56, 5593−5597.

(22) Model cyclotrisilene 9, which has an SiMe3 group and a PMe2 group on the Si=Si double bond and methyl groups on the saturated ring silicon atom, adopts a cis-bent structure with pyramidalized unsaturated silicon atoms at the B3LYP-D3/6-311G(d) level of theory (see Figure 6-60). However, the energy difference between the optimized bent structure and a planar structure is only 1 kJ/mol, indicating that the geometry around the Si=Si double bond should be sensitive to the steric demand of the substituents. Therefore, it is difficult to discuss the effects of the PR2 group on the geometry around the Si=Si double bond using the structural characteristics of 8 obtained by XRD analysis.

(23) A natural bond orbital (NBO) analysis suggested an sp1.87 hybridization for the Si orbital in the Si−P bond in 8opt (Table 6-11).

(24) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176−2179.

(25) Weitz, I. S.; Rabinovitz, M. J. Chem. Soc., Perkin Trans. 1, 1993, 117−120.

(26) Sheldrick, G. M. SADABS, Empirical Absorption Correction Program; Göttingen, Germany, 1996.

(27) Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3−8.

(28) Wakita, K. Yadokari-XG: Software for Crystal Structure Analyses, 2001; Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. J. Crystallogr. Soc. Jpn., 2009, 51, 218−224.

(29) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

(30) GRRM14, Maeda, S.; Harabuchi, Y.; Osada, Y.; Taketsugu, T.; Morokuma, K.; Ohno, K. see https://iqce.jp/GRRM/ (accessed date March 21, 2020); Maeda, S.; Ohno, K.; Morokuma, K. Phys. Chem. Chem. Phys. 2013, 15, 3683−3701.

(31) NBO 7.0, Glendening, E. D.; Badenhoop, J, K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison (2018).

参考文献をもっと見る