リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids

増田涼介 木村龍太郎 唐﨑貴史 佐瀬祥平 後藤 敬 Ryosuke Masuda Ryutaro Kimura Takafumi Karasaki Shohei Sase Kei Goto 東京工業大学 DOI:https://doi.org/10.1021/jacs.1c02383

2021.04.22

概要

Although selenocysteine selenenic acids (Sec–SeOHs) have been recognized as key intermediates in the catalytic cycle of glutathione peroxidase (GPx), examples of the direct observation of Sec–SeOH in either protein or small-molecule systems have remained elusive so far, mostly due to their instability. Here, we report the first direct spectroscopic (1H and 77Se NMR) evidence for the formation of Sec–SeOH in small-molecule selenocysteine and selenopeptide model systems with a cradle-type protective group. The catalytic cycle of GPx was investigated using NMR-observable Sec–SeOH models. All the hitherto proposed chemical processes, i.e., not only those of the canonical catalytic cycle but also those involved in the bypass mechanism, including the intramolecular cyclization of Sec–SeOH to the corresponding five-membered ring selenenyl amide, were examined in a stepwise manner.

この論文で使われている画像

参考文献

(1) Mills, G. C. Hemoglobin catabolism I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem. 1957, 229, 189−197.

(2) Flohé, L.; Günzler, W. A.; Schock, H. H. Glutathione Peroxidase: A Selenoenzyme. FEBS Lett. 1973, 32, 132−134.

(3) Kraus, R. J.; Foster, S. J.; Ganther, H. E. Identification of Selenocysteine in Glutathione Peroxidase by Mass Spectroscopy. Biochemistry 1983, 22, 5853−5858.

(4) Kryukov, G. V.; Castellano, S.; Novoselov, S. V.; Lobanov, A. V.; Zehtab, O.; Guigó, R.; Gladyshev, V. N. Characterization of Mammalian Selenoproteomes. Science 2003, 300, 1439−1443.

(5) Lubos, E.; Loscalzo, J.; Handy, D. E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signaling 2011, 15, 1957−1997.

(6) Flohé, L. Looking Back at the Early Stages of Redox Biology. Antioxidants 2020, 9, 1254.

(7) Rotruck, T. J.; Pope, L. A.; Ganther, E. H.; Swanson, B. A.; Hafeman, G. D.; Hoekstra, G. W. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588−590.

(8) Brigelius-Flohé, R.; Maiorino, M. Glutathione Peroxidases. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 3289−3303.

(9) Maiorino, M. F.; Brigelius-Flohé, R.; Aumann, K. D.; Roveri, A.; Schomburg, D.; Flohé, L. [5] Diversity of Glutathione Peroxidases. Methods Enzymol. 1995, 252, 38−53.

(10) Mauri, P.; Benazzi, L.; Flohé, L.; Maiorino, M.; Pietta, G. P.; Pilawa, S.; Roveri, A.; Ursini, F. Versatility of Selenium Catalysis in PHGPx Unraveled by LC/ESI-MS/MS. Biol. Chem. 2003, 384, 575−588.

(11) Liu, J.; Rozovsky, S. Contribution of Selenocysteine to the Peroxidase Activity of Selenoprotein S. Biochemistry 2013, 52, 5514−5516.

(12) Liu, J.; Zhang, Z.; Rozovsky, S. Selenoprotein K Form an intermolecular diselenide bond with unusually high redox potential. FEBS Lett. 2014, 588, 3311−3321.

(13) Payne, N. C.; Barber, D. R.; Ruggles, E. L.; Hondal, R. J. Can dimedone be used to study selenoproteins? An investigation into the reactivity of dimedone toward oxidized forms of selenocysteine. Protein Sci. 2019, 28, 41−55.

(14) Scinto, S. L.; Ekanayake, O.; Seneviratne, U.; Pigga, J. E.; Boyd, S. J.; Taylor, M. T.; Liu, J.; Am Ende, C. W.; Rozovsky, S.; Fox, J. M. Dual-Reactivity trans-Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching. J. Am. Chem. Soc. 2019, 141, 10932−10937.

(15) Ma, S.; Caprioli, R. M.; Hill, K. E.; Burk, R. F. Loss of Selenium from Selenoproteins: Conversion of Selenocysteine to Dehydroala- nine in Vitro. J. Am. Soc. Mass Spectrom. 2003, 14, 593−600.

(16) Walter, R.; Roy, J. Selenomethionine, a Potential Catalytic Antioxidant in Biological Systems. J. Org. Chem. 1971, 36, 2561− 2563.

(17) Cho, S.-C.; Lee, S.; Lee, G. T.; Woo, A. H.; Choi, J.-E.; Rhee, G. S. Irreversible Inactivation of Glutathione Peroxidase 1 and Reversible Inactivation of Peroxiredoxin II by H2O2 in Red Blood Cells. Antioxid. Redox Signaling 2010, 12, 1235−1246.

(18) Orian, L.; Mauri, P.; Roveri, A.; Toppo, S.; Benazzi, L.; Bosello- Travain, V.; De Palma, A.; Maiorino, M.; Miotto, G.; Zaccarin, M.; Polimeno, A.; Flohé, L.; Ursini, F. Selenocysteine Oxidation in Glutathione Peroxidase Catalysis: An MS-Supported Quantum Mechanics Study. Free Radical Biol. Med. 2015, 87, 1−14.

(19) Reich, H. J.; Jasperse, C. P. Organoselenium Chemistry. Redox Chemistry of Selenocysteine Model Systems. J. Am. Chem. Soc. 1987, 109, 5549−5551.

(20) Fischer, H.; Dereu, N. Mechanism of the Catalytic Reduction of Hydroperoxides by Ebselen: A Selenium − 77 Nmr Study. Bull. Soc. Chim. Belg. 1987, 96, 757.

(21) Sarma, B. K.; Mugesh, G. Glutathione Peroxidase (GPx)-like Antioxidant Activity of the Organoselenium Drug Ebselen: Un- expected Complications with Thiol Exchange Reactions. J. Am. Chem. Soc. 2005, 127, 11477−11485.

(22) Bhowmick, D.; Srivastava, S.; D’Silva, P.; Mugesh, G. Highly Efficient Glutathione Peroxidase and Peroxiredoxin Mimetics Protect Mammalian Cells against Oxidative Damage. Angew. Chem., Int. Ed. 2015, 54, 8449−8453.

(23) Ungati, H.; Govindaraj, V.; Narayanan, M.; Mugesh, G. Probing the Formation of a Seleninic Acid in Living Cells by the Fluorescence Switching of a Glutathione Peroxidase Mimetic. Angew. Chem., Int. Ed. 2019, 58, 8156−8160.

(24) Reich, H. J.; Hoger, C. A.; Willis, W. W. Organoselenium Chemistry : A Study of Intermediates in the Fragmentation of Aliphatic Ketoselenoxides. Characterization of Selenoxides, Selenena- mides and Selenolseleninates by 1H-,13C-and 77Se-NMR. Tetrahedron 1985, 41, 4771−4779.

(25) Kice, J. L.; Chiou, S. Rates of Oxidation of o-Nitro- benzeneselenenyl Compounds by m-Chloroperoxybenzoic Acid and the Rate of Reaction of o-Nitrobenzeneselenol with o-Nitro- benzeneselenenic Acid. J. Org. Chem. 1986, 51, 290−294.

(26) Reich, H. J.; Willis, W. W., Jr.; Wollowitz, S. Stable” selenenic acids. Tetrahedron Lett. 1982, 23, 3319−3322.

(27) Reich, H. J.; Jasperse, C. P. Organoselenium Chemistry. Preparation and Reactions of 2,4,6-Tri-tert-butylbenzeneselenenic Acid. J. Org. Chem. 1988, 53, 2389−2390.

(28) Iwaoka, M.; Tomoda, S. A Model Study on the Effect of an Amino Group on the Antioxidant Activity of Glutathione Peroxidase. J. Am. Chem. Soc. 1994, 116, 2557−2561.

(29) Saiki, T.; Goto, K.; Okazaki, R. Isolation and X-ray Crystallographic Analysis of a Stable Selenenic Acid. Angew. Chem., Int. Ed. Engl. 1997, 36, 2223−2224.

(30) Goto, K.; Nagahama, M.; Mizushima, T.; Shimada, K.; Kawashima, T.; Okazaki, R. The First Direct Oxidative Conversion of a Selenol to a Stable Selenenic Acid: Experimental Demonstration of Three Processes Included in the Catalytic Cycle of Glutathione Peroxidase. Org. Lett. 2001, 3, 3569−3572.

(31) Sase, S.; Kakimoto, R.; Goto, K. Synthesis of a Stable Selenoaldehyde by Self-Catalyzed Thermal Dehydration of a Primary- Alkyl-Substituted Selenenic Acid. Angew. Chem., Int. Ed. 2015, 54, 901−904.

(32) Sase, S.; Kakimoto, R.; Kimura, R.; Goto, K. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid. Molecules 2015, 20, 21415−21420.

(33) Sase, S.; Kimura, R.; Masuda, R.; Goto, K. Model Study on Trapping of Protein Selenenic Acids by Utilizing a Stable Synthetic Congener. New J. Chem. 2019, 43, 6830−6833.

(34) Ishii, A.; Matsubayashi, S.; Takahashi, T.; Nakayama, J. Preparation of a Selenenic Acid and Isolation of Selenoseleninates. J. Org. Chem. 1999, 64, 1084−1085.

(35) Zielinski, Z.; Presseau, N.; Amorati, R.; Valgimigli, L.; Pratt, D. Redox Chemistry of Selenenic Acids and the Insight It Brings on Transition State Geometry in the Reactions of Peroxyl Radicals. J. Am. Chem. Soc. 2014, 136, 1570−1578.

(36) Sano, T.; Masuda, R.; Sase, S.; Goto, K. Isolable Small- Molecule Cysteine Sulfenic Acid. Chem. Commun. 2021, 57, 2479−2482.

(37) Epp, O.; Ladenstein, R.; Wendel, A. The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2-nm Resolution. Eur. J. Biochem. 1983, 133, 51−69.

(38) Scheerer, P.; Borchert, A.; Krauss, N.; Wessner, H.; Gerth, C.; Höhne, W.; Kuhn, H. Structural Basis for Catalytic Activity and Enzyme Polymerization of Phospholipid Hydroperoxide Glutathione Peroxidase-4 (GPx4). Biochemistry 2007, 46, 9041−9049.

(39) Shimodaira, S.; Iwaoka, M. Synthesis of selenocysteine- containing dipeptides modeling the active site of thioredoxin reductase. Phosphorus, Sulfur Silicon Relat. Elem. 2019, 194, 750−752.

(40) Kunishima, M.; Kawachi, C.; Iwasaki, F.; Terao, K.; Tani, S. Synthesis and Characterization of 4-(4,6-Dimethoxy-1,3,5-triazin-2- yl)-4-methylmorpholinium Chloride. Tetrahedron Lett. 1999, 40, 5327−5330.

(41) Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S. Formation of carboxamides by direct condensation of carboxylic acids and amines in alcohols using a new alcohol- and water-soluble condensing agent: DMT-MM. Tetrahedron 2001, 57, 1551−1558.

(42) Berry, M. J.; Banu, L.; Larsen, P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 1991, 349, 438−440.

(43) Köhrle, J. Local activation and inactivation of thyroid hormones: the deiodinase family. Mol. Cell. Endocrinol. 1999, 151, 103−119.

(44) Salzen, A. M.-v.; Meyer, H.-U.; du Mont, W.-W. Diselenides and Iodine: Influence of Solution Equilibria Between Covalent Compounds and Charge − Transfer Complexes. Phosphorus, Sulfur Silicon Relat. Elem. 1992, 67, 67−71.

(45) To accelerate the rate of oxidation of Sec−SeH, a base was needed.

(46) Sec−SeOH 1a exhibited a singlet corresponding to the OH proton at 5.35 ppm.

(47) 77Se NMR chemical shifts of previously reported arylmethyl- substituted selenenic acids: S12 (1243 ppm) and S13 (1261 ppm); for details, see Table S4.

(48) Cyclic selenenyl amide 14 was also obtained by the intramolecular cyclization of Sec−SeI 5 in the presence of NaOH (Scheme S26). The five-membered ring structure of 14 was determined by 2D NMR spectroscopy (Figure S12). Compound 14 was found to be less susceptible to oxidative deselenation than Sec− SeH 3b (Scheme S30, Tables S7 and S8).

参考文献をもっと見る