リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Metal-Ligand Cooperation of Cobalt(I) Complexes Bearing a Phenanthroline-Based Tetradentate PNNP Ligand and Its Application to Catalytic Hydrodehalogenation of Aryl Halides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Metal-Ligand Cooperation of Cobalt(I) Complexes Bearing a Phenanthroline-Based Tetradentate PNNP Ligand and Its Application to Catalytic Hydrodehalogenation of Aryl Halides

Jheng, Nai-Yuan 筑波大学 DOI:10.15068/0002005515

2022.11.17

概要

Research on catalysts has intensely sprouted in recent years due to reconsideration for over- exhausted resources such as their precious counterparts,1 e.g. complexes of ruthenium, rhodium, and platinum. Therefore, the demand for more sustainable and cheaper surrogates encourages more scientists to develop new catalysts. With similar electronic configurations in valence shells to those of noble metal atoms, 3d metal complexes are considered as candidates to replace those precious metal catalysts. In addition, 3d metal complexes are usually inexpensive, more earth- abundant, and less toxic. Thus, there are recently more and more research focusing on the development of new 3d metal catalysts.

 In the study of these new 3d metal catalysts, cobalt complexes are regarded as one of the most promising systems due to their involvement in various biochemical and catalytic reactions.2 In industries, for example, both Fischer–Tropsch3 and hydroformylation processes4 are well- known cobalt-catalyzed processes. The former often makes use of a metallic cobalt usually supported on ruthenium, alumina, etc. to transform carbon monoxide (CO) and hydrogen (H2) into hydrocarbons. The latter historically applies cobalt tetracarbonyl hydride, [HCo(CO)4], as a catalyst to achieve aldehydes formation from alkenes, CO, and H2. Interestingly, this reaction was discovered by Roelen while he studied the Fisher-Tropsch process in 1938 (Scheme 1).5

 The cobalt complex, [HCo(CO)4], is a well-defined cobalt catalyst, and the widely-accepted mechanism was proposed by Heck and Breslow in 1960.6 It is also widely known that the phosphine-supported Rh(I) complex, [HRh(CO)2(PPh3)2],7 was developed by Wilkinson et al. and revealed to exhibit much higher catalytic performance for the hydroformylation reaction. However, it is worth mentioning that a recent study on cobalt catalyst systems revealed that a cationic cobalt(II) carbonyl hydrido complex bearing two phosphine ligands can approach the performance of the Rh catalyst.8

 Cobalamins (vitamin B12) as an enzyme having a cobalt ion at the active center, which belong to one of B vitamins and cofactors involved in DNA syntheses, nervous systems, and other biological reactions,9 are known to facilitate the generation of alkyl radicals, such as deoxyadenosyl radical via homolysis of a weak CoC bond (ca. 20 ~ 30 kcal/mol) (Scheme 2).10

 Such mechanisms of radical generation by cobalamins and related compounds were applied to reduction of aryl halides, establishing processes for syntheses (i.e. deprotection of halide in aromatic systems)11 and degradation of organic halides, which are common chemical wastes and sources of pollution.12 For example, pentachlorophenol (PCP) can be mainly converted to isomers of tetrachlorophenol by vitamin B12 and titanium(III) citrate at room temperature after 24 hours (Scheme 3).13

 Although there are some practical reactions catalyzed by cobalt complexes, and they are highly expected as candidates of precious metal catalyst surrogates, most of the cobalt complexes still cannot be compatible with other noble metal complexes. Therefore, to overcome the inferiority, suitable ligand designs are desired to further expand the reaction chemistry of cobalt complexes.

この論文で使われている画像

参考文献

Chapter 1

(1) (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217–6254. (b) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170–3387. (c) Fürstner, A. ACS Cent. Sci. 2016, 2, 778– 789. (d) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2018, 119, 2192–2452. (e) Irrgang, T.; Kempe, R. Chem. Rev. 2018, 119, 2524–2549. (f) Alig, L.; Fritz, M.; Schneider, S. Chem. Rev. 2018, 119, 2681–2751. (g) Taylor, L. J.; Kays, D. L. Dalton Trans. 2019, 48, 12365–12381.

(2) (a) Debuigne, A.; Poli, R.; Jérôme, C.; Jérôme, R.; Detrembleur, C. Prog. Polym. Sci. 2009, 34, 211–239. (b) Junge, K.; Papa, V.; Beller, M. Chem. Eur. J. 2019, 25,122–143. (c) Michiyuki, T.; Komeyama, K. Asian J. Org. Chem. 2020, 9, 343–358. (d) Kyne, S. H.; Lefèvre, G.; Ollivier, C.; Petit, M.; Cladera, V.-A. R.; Fensterbank, L. Chem. Soc. Rev. 2020, 49, 8501–8542.

(3) (a) Oukaci, R.; Singleton, A. H.; Goodwin, J. G. Appl. Catal. A Gen. 1999, 186, 129–144. (b) Balonek, C. M.; Lillebø, A. H.; Rane, S.; Rytter, E.; Schmidt, L. D.; Holmen, A. Catal. Lett. 2010, 138, 8–13. (c) de Klerk, A., Fischer−Tropsch Process. Kirk-Othmer Encyclopedia of Chemical Technology; Wiley-VCH: Weinheim, 2013. (d) Kwak, G.; Kim, D.-E.; Kim, Y. T.; Park, H.-G.; Kang, S. C.; Ha, K.-S.; Jun, K.-W.; Lee, Y.-J. Catal. Sci. Technol. 2016, 6, 4594–4600. (e) Jeske, K.; Kizilkaya, A. C.; López-Luque, I.; Pfänder, N.; Bartsch, M.; Concepción, P.; Prieto, G. ACS Catal. 2021, 11, 4784–4798.

(4) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675–5732.

(5) Cornils, B.; Herrmann, W. A.; Rasch, M. Angew. Chem. Int. Ed. 1994, 33, 2144–2163.

(6) Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 2002, 83, 4023–4027.

(7) Evans, D.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. A Inorg. Phys. Theor. 1968, 62, 3133– 3142.

(8) Hood, D. M.; Johnson, R. A.; Carpenter, A. E.; Younker, J. M.; Vinyard, D. J.; Stanley, G. G. Science 2020, 367, 542–548.

(9) (a) Gruber, K.; Puffer, B.; Kräutler, B. Chem. Soc. Rev. 2011, 40, 4346–4363. (b) Giedyk, M.; Goliszewska, K.; Gryko, D. Chem. Soc. Rev. 2015, 44, 3391–3404.

(10) Pattenden, G. Chem. Soc. Rev. 1988, 17, 361–382.

(11) (a) Choi, H. Y.; Chi, D. Y. J. Am. Chem. Soc. 2001, 123, 9202–9203. (b) Effenberger, F. Angew. Chem. Int. Ed. 2002, 41, 1699–1700.

(12) (a) Payne, K. A. P.; Quezada, C. P.; Fisher, K.; Dunstan, M. S.; Collins, F. A.; Sjuts, H.; Levy, C.; Hay, S.; Rigby, S. E. J.; Leys, D. Nature 2014, 517, 513–516. (b) Kunze, C.; Bommer, M.; Hagen, W. R.; Uksa, M.; Dobbek, H.; Schubert, T.; Diekert, G. Nat. Commun. 2017, 8, 15858. (c) Chen, C.; Zuo, H.; Chan, K. S. Tetrahedron 2019, 75, 510–517. (d) Shimakoshi, H.; Shichijo, K.; Tominaga, S.; Hisaeda, Y.; Fujitsuka, M.; Majima, T. Chem. Lett. 2020, 49, 820–822.

(13) Smith, M. H.; Woods, S. L. Appl. Environ. Microbiol. 1994, 60, 4111–4115.

(14) (a) Grützmacher, H. Angew. Chem. Int. Ed. 2008, 47, 1814–1818. (b) Khusnutdinova, J. R.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54, 12236–12273.

(15) Jørgensen, C. K. Coord. Chem. Rev. 1966, 1, 164–178.

(16) (a) Kaim, W.; Schwederski, B. Coord. Chem. Rev. 2010, 254, 1580–1588. (b) Hoffmann, R.; Alvarez, S.; Mealli, C.; Falceto, A.; Cahill, T. J.; Zeng, T.; Manca, G. Chem. Rev. 2016, 116, 8173– 8192. (c) Ganguly, S.; Ghosh, A. Acc. Chem. Res. 2019, 52, 2003–2014.

(17) Kaim, W. Coord. Chem. Rev. 2002, 230, 127–139.

(18) (a) Prakash, G. K. S.; Wang, F.; Zhang, Z.; Haiges, R.; Rahm, M.; Christe, K. O.; Mathew, T.; Olah, G. A. Angew. Chem. Int. Ed. 2014, 53, 11575−11578. (b) Yamada, C.; Hirota, E. J. Chem. Phys. 1983, 78, 1703−1711.

(19) (a) Pierpont, C.G. Coord. Chem. Rev. 2001, 2217, 99–125. (b) Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. Dalton Trans. 2007, 1552–1566. (c) Eisenberg, R.; Gray, H. B. Inorg. Chem. 2011, 50, 9741–9751.

(20) (a) Balch, A. L. J. Am. Chem. Soc. 1973, 95, 2723–2724. (b) Griffith, W. P. Trans. Met. Chem. 1993, 18, 250–256. (c) Pierpont, C. G.; Lange, C.W. Prog. Inorg. Chem. 1994, 41, 331. (d) Pierpont, C. G. Coord. Chem. Rev. 2001, 216–217, 99–125. (e) Bhattacharya, S.; Gupta, P.; Basuli, F.; Pierpont, C. G. Inorg. Chem. 2002, 41, 5810–5816.

(21) (a) Borowski, T.; Siegbahn, P. E. M. J. Am. Chem. Soc. 2006, 128, 12941–12953. (b) Pau, M. Y. M.; Davis, M. I.; Orville, A. M.; Lipscomb, J. D.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 1944–1958. (c) Bugg, T.D.H.; Ramaswamy, S. Curr. Opin. Chem. Biol. 2008, 12, 134–140.

(22) W. Kaim, B. Sarkar, G.K. Lahiri, in: W. Kaim, A. Klein Spectroelectrochemistry; Royal Society of Chemistry, Cambridge, 2008, pp 68.

(23) Other applications, for example, (a) as anti-cancer drugs: Koyama, J. Recent Pat. Anti-Infect. Drug Discov. 2006, 1, 113–125.; (b) as a model study for pathogenic research on Parkinson’s disease: Arreguin, S.; Nelson,P.; Padway, S.; Shirazi, M.; Pierpont, C. J. Inorg. Biochem. 2009, 103, 87–93.

(24) Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270−279.

(25) (a) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201−2237. (b) Muñiz, K. Angew. Chem. Int. Ed. 2005, 44, 6622−6627.

(26) Sandoval, C.A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490– 13503.

(27) (a) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40–73. (b) Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001, 66, 7931–7944.

(28) (a) Kelly, W. S. J.; Ford, G. H.; Nelson, S. M. J. Chem. Soc. A Inorg. Phys. Theor. 1971, 0, 388–396. (b) Dahlhoff, W. V.; Nelson, S. M. J. Chem. Soc. A Inorg. Phys. Theor. 1971, 0, 2184– 2190. (c) J. Moulton, C.; L. Shaw, B. J. Chem. Soc. Dalt. Trans. 1976, 0, 1020–1024. (d) van Koten, G.; Timmer, K.; Noltes, J. G.; Spek, A. L. J. Chem. Soc. Chem. Commun. 1978, 6, 250– 252.

(29) Peris, E.; Crabtree, R. H. Chem. Soc. Rev. 2018, 47, 1959–1968.

(30) Selander, N.; Szabó, K. J. Chem. Rev. 2010, 111, 2048–2076.

(31) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790–792.

(32) Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Science 2009, 324, 74–77.

(33) Gunanathan, C.; Gnanaprakasam, B.; Iron, M. A.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 14763–14765.

(34) Stepowska, E.; Jiang, H.; Song, D. Chem. Commun. 2010, 46, 556–558.

(35) Khaskin, E.; Diskin-Posner, Y.; Weiner, L.; Leitus, G.; Milstein, D. Chem. Commun. 2013, 49, 2771–2773.

(36) Semproni, S. P.; Milsmann, C.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 9211–9224.

(37) (a) Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg. Chem. 2014, 53, 9463–9465. (b) Obligacion, J. V.; Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 4133–4136. (c) Neely, J. M.; Bezdek, M. J.; Chirik, P. J. ACS Cent. Sci. 2016, 2, 935–942. (d) Obligacion, J. V.; Semproni, S. P.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 10645– 10653. (e) Pabst, T. P.; Obligacion, J. V.; Rochette, É.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2019, 141, 15378–15389.

(38) (a) Bowman, A. C.; Milsmann, C.; Atienza, C. C. H.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132, 1676–1684. (b) Obligacion, J. V.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 19107–19110.

(39) Schaefer, B. A.; Margulieux, G. W.; Small, B. L.; Chirik, P. J. Organometallics 2015, 34, 1307–1320.

(40) Kuriyama, S.; Arashiba, K.; Tanaka, H.; Matsuo, Y.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Angew. Chem. Int. Ed. 2016, 55, 14291–14295.

(41) Tokmic, K.; Markus, C. R.; Zhu, L.; Fout, A. R. Am. Chem. Soc. 2016, 138, 11907–11913.

(42) Lin, T.-P.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310–15313.

(43) Ziessel, R. Tetrahedron Lett. 1989, 30, 463–466.

(44) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588–602

(45) Langer, R.; Fuchs, I.; Vogt, M.; Balaraman, E.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben- David, Y.; Milstein, D. Chem. Eur. J. 2013, 19, 3407–3414.

(46) Kamada, K.; Jung, J.; Wakabayashi, T.; Sekizawa, K.; Sato, S.; Morikawa, T.; Fukuzumi, S.; Saito, S. J. Am. Chem. Soc. 2020, 142, 10261−10266.

(47) A triplet signal was found at 8.65 ppm in a 1H NMR spectrum (in C6D6). The detailed experimental results can be referred to ref. 45.

(48) (a) Takeshita, T.; Sato, K.; Nakajima, Y. Dalton Trans. 2018, 47, 17004–17010. (b) Takeshita, T.; Nakajima, Y. Chem. Lett. 2019, 48, 364–366.

(49) The bond length of C1P1 bond is 1.777(4) Å, and the bond length of CP bond on another side arm is 1.849(4) Å. The detailed experimental results can be referred to ref. 48b.

(50) Gautam, M.; Yatabe, T.; Tanaka, S.; Satou, N.; Takeshita, T.; Yamaguchi, K.; Nakajima, Y. ChemistrySelect 2020, 5, 15–17.

(51) Gautam, M.; Tanaka, S.; Sekiguchi, A.; Nakajima Y. Organometallics 2021, 40, 3697–3702.

Chapter 2

(1) (a) Liu, W.; Shahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858−1869. (b) Junge, K.; Papa, V.; Beller, M. Chem. Eur. J. 2019, 25,122–143.

(2) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414–6415. (b) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049–4050. (c) Small, B. L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 7143–7144. (d) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169–1204.

(3) (a) Britovsek, J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 7, 849 –850. (b) Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Strömberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 8728–8740.

(4) Gibson, V. C.; Humphries, M. J.; Tellmann, K. P.; Wass, D. F.; White, A. J. P.; Williams, D. J. Chem. Commun. 2001, 2252–2253.

(5) Kooistra, T. M.; Knijnenburg, Q.; Smits, J. M. M.; Horton, A. D.; Budzelaar, P. H. M.; Gal, A. W. Angew. Chem. Int. Ed. 2001, 40, 4719–4722.

(6) (a) Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg. Chem. 2014, 53, 9463– 9465. (b) Obligacion, J. V.; Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 4133–4136. (c) Neely, J. M.; Bezdek, M. J.; Chirik, P. J. ACS Cent. Sci. 2016, 2, 935–942. (d) Obligacion, J. V.; Semproni, S. P.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 10645–10653. (e) Pabst, T. P.; Obligacion, J. V.; Rochette, É.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2019, 141, 15378– 15389.

(7) (a) Grützmacher, H. Angew. Chem. Int. Ed. 2008, 47, 1814–1818. (b) Khusnutdinova, J. R.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54, 12236–12273.

(8) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790–792.

(9) Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Science 2009, 324, 74–77.

(10) Khaskin, E.; Diskin-Posner, Y.; Weiner, L.; Leitus, G.; Milstein, D. Chem. Commun. 2013, 49, 2771–2773.

(11) Langer, R.; Fuchs, I.; Vogt, M.; Balaraman, E.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben- David, Y.; Milstein, D. Chem. Eur. J. 2013, 19, 3407–3414.

(12) (a) Takeshita, T.; Sato, K.; Nakajima, Y. Dalton Trans. 2018, 47, 17004–17010. (b) Takeshita, T.; Nakajima, Y. Chem. Lett. 2019, 48, 364–366. (c) Gautam, M.; Yatabe, T.; Tanaka, S.; Satou, N.; Takeshita, T.; Yamaguchi, K.; Nakajima, Y. ChemistrySelect 2020, 5, 15–17. (e) Gautam, M.; Tanaka, S.; Sekiguchi, A.; Nakajima Y. Organometallics 2021 ASAP.

(13) Ishizaka, Y. Master thesis in February 2019.

(14) (a) Hung-Low, F.; Krogman, J. P.; Tye, J. W.; Bradley, C. A. Chem. Commun. 2012, 48, 368–370. (b) Marinescu, S. C.; Winkler, J. R.; Gray, H. B. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15127–15131. (c) Reinaud, O. M.; Theopold, K. H. J. Am. Chem. Soc. 1994, 116, 6979–6980. (d) Sung, S.; Wang, Q.; Krämer, T.; Young, R. D. Chem. Sci. 2018, 9, 8234–8241.

(15) Semproni, S. P.; Hojilla Atienza, C. C.; Chirik, P. J. Chem. Sci. 2014, 5, 1956–1960.

(16) Jheng, N.Y.; Ishizaka, S.; Naganawa, Y.; Sekiguchi, A.; Nakajima, Y. Dalton Trans. 2020, 49, 14592–14597.

(17) The bond length of C1P1 bond is 1.788(2) Å, and the bond length of CP bond on another side arm is 1.867(2) Å. The detailed experimental results can be referred to ref. 16.

(18) Takeshita, T.; Nakajima, Y. Chem. Lett. 2019, 48, 364–366.

(19) Considering the relative instability of 5, the reaction of 5 with TEMPO was not performed.

(20) Henry-Riyad, H.; Tidwell, T. T. J. Phys. Org. Chem. 2003, 16, 559–563.

(21) Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem. Int. Ed. 2017, 56, 14212–14216.

(22) Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G. L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. J. Appl. Cryst. 2015, 48, 306.

(23) M.Sheldrick, G. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122.

(24) Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. Release of software (Yadokari-XG 2009) for crystal structure analyses. Nippon Kessho Gakkaishi 2009, 51, 218.

Chapter 3

(1) (a) Bullock, R. M. Science 2013, 342, 1054-1055. (b) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Chem. Eur. J. 2015, 21, 12226 – 12250. (c) Stoffels, M. A.; Klauck, F. J. R.; Hamadi, T.; Glorius, F.; Leker, J. Adv. Synth. Catal. 2020, 362, 1258 – 1274.

(2) (a) Sordakis, K.; Tang, C.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372−433. (b) Shao, Z.; Li, Yang; Liu, C.; Ai, W.; Luo, S.-P.; Liu, Q. Nat. Commun. 2020, 11, 591. (c) Tan, K. C.; He, T.; Chua, Y.S.; Chen, P. J. Phys. Chem. C 2021, 125, 18553−18566.

(3) Craabtree, R. H. Oxidative Addition and Reductive Elimination. In The Organometallic Chemistry of the Transition Metals, 7th ed.; John Wiley & Sons, 2019; pp 147−168.

(4) (a) Grützmacher, H. Angew. Chem. Int. Ed. 2008, 47, 1814–1818. (b) Khusnutdinova, J. R.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54, 12236–12273.

(5) Sandoval, C.A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490– 13503.

(6) Yu, R. P.; Darmon, J. M.; Milsmann, C.; Margulieux, G. W.; Stieber, S. C. E.; DeBeer, S,; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 13168–13184.

(7) Poitras, A. M.; Knight, S. E.; Bezpalko, M. W.; Foxman, B. M.; Thomas, C.M. Angew. Chem. Int. Ed. 2018, 57,1497–1500.

(8) (a) Takeshita, T.; Sato, K.; Nakajima, Y. Dalton Trans. 2018, 47, 17004–17010. (b) Takeshita, T.; Nakajima, Y. Chem. Lett. 2019, 48, 364–366. (c) Gautam, M.; Yatabe, T.; Tanaka, S.; Satou, N.; Takeshita, T.; Yamaguchi, K.; Nakajima, Y. ChemistrySelect 2020, 5, 15–17. (d) Gautam, M.; Tanaka, S.; Sekiguchi, A.; Nakajima Y. Organometallics 2021 ASAP.

(9) Langer, R.; Fuchs, I.; Vogt, M.; Balaraman, E.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben- David, Y.; Milstein, D. Chem. Eur. J. 2013, 19, 3407–3414.

(10) Ishizaka, Y. Master thesis in February 2019.

(11) Jheng, N.Y.; Ishizaka, S.; Naganawa, Y.; Sekiguchi, A.; Nakajima, Y. Dalton Trans. 2020, 49, 14592–14597.

(12) 2H NMR Measurement of 4-d was not successful probably due to the relatively low solubility of 4-d in benzene to afford good resolution.

Chapter 4

(1) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2002, 102, 4009–4091.

(2) (a) Fukuzumi, S. New Perspective of Electron Transfer Chemistry. Org. Biomol. Chem. 2003, 1, 609–620. (b) Roth, J. P.; Lovell, S.; Mayer, J. M. J. Am. Chem. Soc. 2000, 122, 5486–5498. (c) Rhile, I. J.; Mayer, J. M. J. Am. Chem. Soc. 2004, 126, 12718–12719.

(3) (a) Akita, Y.; Inoue, A.; Ishida, K.; Terui, K.; Ohta, A. Synth. Commun. 1986, 16, 1067–1072. (b) Grushin, V. V.; Alper, H. Organometallics 1991, 10, 1620–1622. (c) Ferrughelli, D. T.; Horváth, I. T. J. Chem. Soc. Chem. Commun. 1992, 806–807. (d) Cu-cullu, M. E.; Nolan, S. P.; Belderrain, T. R.; Grubbs, R. H. Organometallics 1999, 18, 1299–1304. (e) Buil, M. L.; Esteruelas, M. A.; Niembro, S.; Oliván, M.; Orzechowski, L.; Pelayo, C.; Vallribera, A. Organometallics 2010, 29, 4375–4383. (f) Sahoo, B.; Surkus, A.-E.; Pohl, M.-M.; Radnik, J.; Schneider, M.; Bachmann, S.; Scalone, M.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2017, 56, 11242–11247.

(4) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346, 725–728.

(5) Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 4786–4790. (g) Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. J. Am. Chem. Soc. 2020, 142, 2093–2099.

(6) (a) Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2011, 50, 5018 – 5022. (b) Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765–773. (c) Yi, H.; Jutand, A.; Lei, A. Chem. Commun. 2015, 51, 545–548.

(7) Hokamp, T.; Dewanji, A.; Lübbesmeyer, M.; Mück-Lichtenfeld, C.; Würthwein, E.-U.; Studer, A. Angew. Chem. Int. Ed. 2017, 56, 13275–13278.

(8) Nozawa-Kumada, K.; Iwakawa, Y.; Onuma, S.; Shigeno, M.; Kondo, Y. Chem. Commun. 2020, 56, 7773–7776.

(9) The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed; O'Neil, M.J., Ed.; RSC.org, 2013.

(10) Speight, J. G. Lange's Handbook of Chemistry, 7th ed.; McGraw Hill Education; New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, 2017.

(11) Pattenden, G. Chem. Soc. Rev. 1988, 17, 361–382.

(12) pKa values in H2O for NEt3; 10.7, pyrrolidine; 11.3 in H2O, DBU; 13.5±1.5, MTBD; 15.0±1.0: Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P. G.; Vianello, R.; Leito, I. Eur. J. Org. Chem. 2019, 6735–6748.

(13) pKa value in H2O for DMAP 9.6: Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019–1028.

(14) (a) Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810–1817. (b) Jutand, A.; Hii, K. K. M.; Thornton-Pett, M.; Brown, J. M. Organometallics 1999, 18, 5367–5374. (c) Alcazar-Roman, L. M.; Hartwig, J. F. Organometallics 2002, 21, 491–502. (d) Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 194–202.

(15) Isomerization of 1-methylene-2,3-dihydro-1H-indene to 3-methyl-1H-indene was also reported: (a) Léonard, N. G.; Palmer, W. N.; Friedfeld, M. R.; Bezdek, M. J.; Chirik, P. J. ACS Catal. 2019, 9, 9034–9044. (b) Bhandal, H.; Patel, V. F.; Pattenden, G.; Russell, J. J. J. Chem. Soc. Perkin Trans. 1 1990, 2691–2701.

(16) (a) Studer, A.; Curran, D. P. Angew. Chemie Int. Ed. 2016, 55, 58–102. (b) Kyne, S. H.; Lefèvre, G.; Ollivier, C.; Petit, M.; Cladera, V.-A. R.; Fensterbank, L. Chem. Soc. Rev. 2020, 49, 8501–8542.

(17) For example, (a) Nadjo, L.; Savéant, J. M. J. Electroanal. Chem. 1971, 30, 41–57. (b) Pause, L.; Robert, M.; Savéant, J. M. J. Am. Chem. Soc. 1999, 121, 7158–7159.

(18) (a) Sease, J. W.; Burton, F. G.; Nickol, S. L. J. Am. Chem. Soc. 1968, 90, 2595–2598. (b) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6319–6332.

(19) (a) Marcus, R. A. J. Chem. Phys. 1956, 24, 966–978. (b) Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M. Acc. Chem. Res. 2018, 51, 2391–2399.

(20) Here Marcus-Hush theory was also applied, ΔG++ = αΔG° + constant, giving α = 0.58. See Figure 7.

(21) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176–2179.

(22) Tanaka, S.; Watanabe, K.; Tanaka, Y.; Hattori, T. Org. Lett. 2016, 18, 2576–2579.

(23) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.

(24) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 720–723. (b) Hehre, W. J.; Ditchfield, K.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257–2261. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222. (d) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3665.

(25) (a) Dunning, T. H. Jr.; Hay, P. J. Gaussian Basis Sets for Molecular Calculations. In Modern Theoretical Chemistry, Volume 3: Methods of Electronic Structure Theory, Ed. H. F. Schaefer III, Vol. 3; Plenum Publishing Company, New York, 1977; pp 1–28. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299–310.

(26) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3093.

(27) Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.

(28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B. ; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01; Gaussian: Wallingford, CT, 2019.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る