リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A copper nitride nanocube catalyst for highly efficient hydroboration of alkynes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A copper nitride nanocube catalyst for highly efficient hydroboration of alkynes

Xu, Hang 大阪大学

2023.02.21

概要

Vinyl boronate esters are important and versatile building
blocks in pharmaceutical chemistry1 and synthetic organic
chemistry2. They serve as key nucleophilic reagents in crosscoupling reactions for C–N, C–O, and C–C bond formation.3 The
hydroboration of alkynes with pinacolborane (HBPin) is a useful
method for the synthesis of vinyl boronate esters. 4 However,
HBPin is difficult to handle due to its moisture and oxygen
sensitivity.5 As a result, the catalytic hydroboration of alkynes
with
water-resistant
and
oxygen-insensitive
bis(pinacolato)diboron (B2Pin2) has attracted significant
attention.6 To date, there have been many reports of
homogeneous Cu catalytic systems, but the catalysts in these
systems are difficult to separate and recycle (Scheme 1A).7 To
overcome these drawbacks, some efforts have been devoted to
developing heterogeneous Cu catalysts, such as CuO/MgO, Cu
metal–organic
frameworks
(Cu-MOF),
and
Cu
nanospheres/graphene nanosheets (Cu-NPs/rGO) (Scheme
1B).8 However, these catalytic systems require the use of
additives to activate the B2Pin2. ...

この論文で使われている画像

参考文献

14

15

J. W. B. Fyfe and A. J. B. Watson, Chem, 2017, 3, 31–55.

K. Yang and Q. Song, Acc. Chem. Res., 2021, 54, 2298–2312.

N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483.

For selected reviews: (a) K. Kuciński and G. Hreczycho, Green

Chem., 2020, 22, 5210–5224; (b) S. Rej, A. Das and T. K. Panda,

Adv. Synth. Catal., 2021, 363, 4818–4840; (c) Y. Mutoh, K.

Yamamoto, Y. Mohara and S. Saito, Chem. Rec., 2021, 21, 1–

14; (d) J. Hu, M. Ferger, Z. Shi and T. B. Marder, Chem. Soc.

Rev., 2021, 50, 13129–13188; (e) J. Walkowiak, J. Szyling, A.

Franczyk and R. L. Melen, Chem. Soc. Rev., 2022, 51, 869–994.

5 J. F. Li, Z. Z. Wei, Y. Q. Wang and M. Ye, Green Chem., 2017,

19, 4498–4502.

6 For selected reviews: (a) T. Ishiyama and N. Miyaura, Chem.

Rec., 2004, 3, 271–280; (b) J. Yun, Asian J. Org. Chem., 2013,

2, 1016–1025; (c) S. K. Bose, L. Mao, L. Kuehn, U. Radius, J.

Nekvinda, W. L. Santos, A. W. Stephen, G. S. Patrick and T. B.

Marder, Chem. Rev., 2021, 121, 13238–13341.

7 (a) J. E. Lee, J. Kwon and J. Yun, Chem. Commun., 2008, 733–

734; (b) G. Stavber and Z. Časar, Appl. Organometal. Chem.,

2013, 27, 159–165; (c) H. Yoshida, Y. Takemoto and K. Takaki,

Chem. Comm., 2014, 50, 8299–8302; (c) Y. E. Kim, D. Li and J.

Yun, Dalton Trans., 2015, 44, 12091–12093; (d) Q. Feng, K.

Yang and Q. Song, Chem. Commun., 2015, 51, 15394–15397;

(e) A. K. Nelson, C. L. Peck, S. M. Rafferty and W. L. Santos, J.

Org. Chem., 2016, 81, 4269–4279.

8 (a) A. Grirrane, A. Corma and H. Garcia, Chem. Eur. J., 2011,

17, 2467–2478; (b) J. Zhao, Z. Niu, H. Fu and Y. Li, Chem.

Comm., 2014, 50, 2058–2060; (c) L. Xu and B. Xu, Tetrahedron

Lett., 2017, 58, 2542–2546; (c) X. Zeng, C. Gong, H. Guo, H. Xu,

J. Zhang and J. Xie, New J. Chem., 2018, 42, 17346–17350; (d)

C. Zhang, M. Zhou, S. Liu, B. Wang, Z. Mao, H. Xu, Y. Zhong, L.

Zhang, B. Xu and X. Sui, Carbohydr. Polym., 2018, 191, 17–24;

(e) H. Y. Tsai, M. Madasu and M. H. Huang, Chem. Eur. J., 2019,

25, 1300–1303; (f) Z. L. Wu, X. Lan, N. Gao, X. Kang, Z. Wang,

T. Hu and B. Zhao, J. Catal., 2021, 404, 250–257; (g) L. J. Zhang,

J. C. Yuan, L. J. Ma, Z. Y. Tang and X. M. Zhang, J. Catal., 2021,

401, 63–69; (h) B. Wang, L. Gao, H. Yang and G. Zheng, ACS

Appl. Mater. Interfaces, 2021, 13, 47530–47540; (i) R. J. Wei,

P. Y. You, H. Duan, M. Xie, R. Q. Xia, X. Chen, X. Zhao and G.-H.

Ning, J. Am. Chem. Soc., 2022, 144, 17487–17495.

9 (a) J. Zhang, Z. Wang, W. Chen, Y. Xiong, W. C. Cheong, L.

Zheng, W. Yan, L. Gu, C. Chen, Q. Peng, P. Hu, D. Wang and Y.

Li, Chem, 2020, 6, 725–737; (b) W. H. Li, J. Yang, H. Jing, J.

Zhang, Y. Wang, J. Li, J. Zhao, D. Wang and Y. Li, J. Am. Chem.

Soc., 2021, 143, 15453–15461.

10 For selected reviews: (a) S. Carenco, D. Portehault, C.

Boissiere, N. Mezailles and C. Sanchez, Chem. Rev., 2013, 113,

16

17

18

19

20

21

22

23

24

25

26

27

28

7981–8065; (b) Q. Gao, N. Liu, S. Wang and Y. Tang, Nanoscale,

2014, 6, 14106–14120; (c) H. Hao and X. Lang, ChemCatChem,

2019, 11, 1378–1393; (d) D. R. Aireddy and K. Ding, ACS Catal.,

2022, 12, 4707−4723; our recent works: (e) S. Fujita, K.

Nakajima, J. Yamasaki, T. Mizugaki, K. Jitsukawa and T.

Mitsudome, ACS Catal., 2020, 10, 4261−4267; (f) S. Yamaguchi,

S. Fujita, K. Nakajima, S. Yamazoe, J. Yamasaki, T. Mizugaki

and T. Mitsudome, Green Chem., 2021, 23, 2010−2016; (g) H.

Ishikawa, S. Yamaguchi, A. Nakata, K. Nakajima, S. Yamazoe, J.

Yamasaki, T. Mizugaki and T. Mitsudome, JACS Au, 2022, 2,

419−427.

(a) H. Xu, S. Yamaguchi, T. Mitsudome and T. Mizugaki, Org.

Biomol. Chem., 2021, 19, 6593–6597; (b) H. Xu, S. Yamaguchi,

T. Mitsudome and T. Mizugaki, Eur. J. Org. Chem., 2022,

e202200826.

R. Deshmukh, G. Zeng, E. Tervoort, M. Staniuk, D. Wood and

M. Niederberger, Chem. Mater., 2015, 24, 8282–8288.

A. M. Elseman, M. S. Selim, L. Luo, C. Y. Xu, G. Wang, Y. Jiang,

D. B. Liu, L. P. Liao, Z. Hao and Q. L. Song, ChemSusChem, 2019,

12, 3808–3816.

K. Endo, M. Hirokami and T. Shibata, J. Org. Chem., 2010, 75,

3469–3472.

(a) Y. Lee, H. Jang and A. H. Hoveyda, J. Am. Chem. Soc., 2009,

131, 18234–18235; (b) G. Gao, J. Yan, K. Yang, F. Chen and Q.

Song, Green Chem., 2017, 19, 3997–4001.

(a) G. Gao, Z. Kuang and Q. Song, Org. Chem. Front., 2018, 5,

2249–2253; (b) S. Rao and K. R. Prabhu, Chem. Eur. J., 2018,

24, 13954–13962.

(a) M. Gao, S. B. Thorpe and W. L. Santos, Org. Lett., 2009, 11,

3478–3481; (b) Y. Netsu and N. Tsukada, Lett. Org. Chem.,

2017, 14, 243–247.

(a) J. M. Stevens and D. W. MacMillan, J. Am. Chem. Soc., 2013,

135, 11756−11759; (b) D. G. Hall, Chem. Soc. Rev., 2019, 48,

3475−3496.

(a) A. V. Kalinin, S. Scherer and V. Snieckus, Angew. Chem. Int.

Ed., 2003, 42, 3399–3404; (b) Y. Ma, B. R. P. Reddy and X. Bi,

Org. Lett., 2019, 21, 9860−9863.

V. S. Escribano, C. del Hoyo Martínez, E. F. López, J. G. Amores

and G. Busca, Catal. Commun., 2009, 10, 861–864.

Z. Yin, C. Yu, Z. Zhao, X. Gou, M. Shen, N. Li, M. Muzzio, J. Li, H.

Liu, H. Lin, J. Yin, G. Lu, D. Su and S. Sun, Nano Lett., 2019, 19,

8658−8663.

X. H. Li and M. Antonietti, Chem. Soc. Rev., 2013, 42,

6593−6604.

(a) R. K. Sithole, L. F. E. Machogo, M. A. Airo, S. S. Gqoba, M. J.

Moloto, P. Shumbula, J. Van Wyk and N. Moloto, New J. Chem.,

2018, 42, 3042−3049; (b) M. Parvizian, A. D. Balsa, R.

Pokratath, C. Kalha, S. Lee, D. Van den Eynden, M. Ibanez, A.

Regoutz and J. De Roo, Angew. Chem. Int. Ed., 2022, 134,

e202207013.

Y.-X. Liu, H.-H. Wang, T.-J. Zhao, B. Zhang, H. Su, Z.-H. Xue, X.H. Li and J.-S. Chen, J. Am. Chem. Soc., 2019, 141, 38−41.

S. Furukawa, M. Ieda and K. Shimizu, ACS Catal., 2019, 9,

5096–5103.

P. Zhang, J. Meijide Suárez, T. Driant, E. Dera, Y. Zhang, M.

Ménand, S. Roland and M. Sollogoub, Angew. Chem. Int. Ed.,

2017, 56, 10821–10825.

M. Aelterman, M. Sayes, P. Jubault and T. Poisson, Chem. Eur.

J., 2021, 27, 8277–8282.

(a) K. Shimizu, K. Kon, K. Shimura and S. S. M. A. Hakim, J.

Catal., 2013, 300, 242−250; (b) G. S. Foo, F. Polo-Garzon, V.

Fung, D.-E. Jiang, S. H. Overbury and Z. Wu, ACS Catal., 2017,

7, 4423−4434.

6 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る