リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Vector Resolved Energy Fluxes and Collisional Energy Losses in Magnetic Nozzle Radiofrequency Plasma Thrusters」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Vector Resolved Energy Fluxes and Collisional Energy Losses in Magnetic Nozzle Radiofrequency Plasma Thrusters

Kazuma Emoto Kazunori Takahashi 80451491 Yoshinori Takao 80552661 横浜国立大学

2021.12.10

概要

Energy losses in a magnetic nozzle radiofrequency plasma thruster are investigated to improve the thruster efficiency and are calculated from particle energy losses in fully kinetic simulations. The simulations calculate particle energy fluxes with a vector resolution including the plasma energy lost to the dielectric wall, the plasma beam energy, and the divergent plasma energy in addition to collisional energy losses. As a result, distributions of energy losses in the thruster and the ratios of the energy losses to the input power are obtained. The simulation results show that the plasma energy lost to the dielectric is dramatically suppressed by increasing the magnetic field strength, and the ion beam energy increases instead. In addition, the divergent ion energy and collisional energy losses account for approximately 4%–12% and 30%–40%, respectively, regardless of the magnetic field strength.

参考文献

1. Charles C. Plasmas for Spacecraft Propulsion. J Phys D: Appl Phys (2009) 42:

163001. doi:10.1088/0022-3727/42/16/163001

2. Merino M, Ahedo E. Effect of the Plasma-Induced Magnetic Field on a

Magnetic Nozzle. Plasma Sourc Sci. Technol. (2016) 25:045012. doi:10.1088/

0963-0252/25/4/045012

3. Little JM, Choueiri EY. Electron Demagnetization in a Magnetically

Expanding Plasma. Phys Rev Lett (2019) 123:145001. doi:10.1103/

PhysRevLett.123.145001

4. Takahashi K. Helicon-Type Radiofrequency Plasma Thrusters and Magnetic Plasma

Nozzles. Rev Mod Plasma Phys (2019) 3:3. doi:10.1007/S41614-019-0024-2

5. Chen Z, Wang Y, Tang H, Ren J, Li M, Zhang Z, et al. Electric Potential

Barriers in the Magnetic Nozzle. Phys Rev E (2020) 101:053208. doi:10.1103/

PhysRevE.101.053208

6. Doyle SJ, Bennet A, Tsifakis D, Dedrick JP, Boswell RW, Charles C.

Characterization and Control of an Ion-Acoustic Plasma Instability

Downstream of a Diverging Magnetic Nozzle. Front Phys (2020) 8:24.

doi:10.3389/fphy.2020.00024

Frontiers in Physics | www.frontiersin.org

11

December 2021 | Volume 9 | Article 779204

Emoto et al.

Energy Loss in Magnetic Nozzle

14. Virko VF, Virko YV, Slobodyan VM, Shamrai KP. The Effect of Magnetic

Configuration on Ion Acceleration From a Compact Helicon Source With

Permanent Magnets. Plasma Sourc Sci. Technol. (2010) 19:015004.

doi:10.1088/0963-0252/19/1/015004

15. Ahedo E, Merino M. Two-dimensional Supersonic Plasma Acceleration in a

Magnetic Nozzle. Phys Plasmas (2010) 17:073501. doi:10.1063/1.3442736

16. Fruchtman A, Takahashi K, Charles C, Boswell RW. A Magnetic Nozzle

Calculation of the Force on a Plasma. Phys Plasmas (2012) 19:033507.

doi:10.1063/1.3691650

17. Takahashi K, Charles C, Boswell RW. Approaching the Theoretical

Limit of Diamagnetic-Induced Momentum in a Rapidly Diverging

Magnetic Nozzle. Phys Rev Lett (2013) 110:195003. doi:10.1103/

PhysRevLett.110.195003

18. Takahashi K, Chiba A, Komuro A, Ando A. Experimental Identification of an

Azimuthal Current in a Magnetic Nozzle of a Radiofrequency Plasma

Thruster. Plasma Sourc Sci. Technol. (2016) 25:055011. doi:10.1088/09630252/25/5/055011

19. Emoto K, Takahashi K, Takao Y. Numerical Investigation of Internal Plasma

Currents in a Magnetic Nozzle. Phys Plasmas (2021) 28:093506. doi:10.1063/

5.0053336

20. Takahashi K. Magnetic Nozzle Radiofrequency Plasma Thruster Approaching

Twenty Percent Thruster Efficiency. Sci Rep (2021) 11:2768. doi:10.1038/

s41598-021-82471-2

21. Goebel DM, Katz I. Fundamentals of Electric Propulsion: Ion and Hall

Thrusters. Hoboken: John Wiley & Sons (2008).

22. Di Cara DM, Estublier D. Smart-1: An Analysis of Flight Data. Acta

Astronautica (2005) 57:250–6. doi:10.1016/J.ACTAASTRO.2005.03.036

23. Pidgeon D, Corey R, Sauer B, Day M. Two Years of On-Orbit Performance

of Spt-100 Electric Propulsion. In: 24th AIAA International

Communications Satellite Systems Conference (2006). p. 5353.

doi:10.2514/6.2006-5353

24. Scime EE, Keiter PA, Balkey MM, Boivin RF, Kline JL, Blackburn M, et al. Ion

Temperature Anisotropy Limitation in High Beta Plasmas. Phys Plasmas

(2000) 7:2157–65. doi:10.1063/1.874036

25. Takahashi K, Lafleur T, Charles C, Alexander P, Boswell RW. Electron Diamagnetic

Effect on Axial Force in an Expanding Plasma: Experiments and Theory. Phys Rev

Lett (2011) 107:235001. doi:10.1103/PhysRevLett.107.235001

26. Aguirre EM, Bodin R, Yin N, Good TN, Scime EE. Evidence for Electron

Energization Accompanying Spontaneous Formation of Ion Acceleration

Regions in Expanding Plasmas. Phys Plasmas (2020) 27:123501.

doi:10.1063/5.0025523

27. Lafleur T. Helicon Plasma Thruster Discharge Model. Phys Plasmas (2014) 21:

043507. doi:10.1063/1.4871727

28. Takahashi K, Chiba A, Komuro A, Ando A. Axial Momentum Lost to a Lateral

Wall of a Helicon Plasma Source. Phys Rev Lett (2015) 114:195001.

doi:10.1103/PhysRevLett.114.195001

29. Takahashi K, Sugawara T, Ando A. Spatially- and Vector-Resolved

Momentum Flux Lost to a Wall in a Magnetic Nozzle Rf Plasma Thruster.

Sci Rep (2020) 10:1061. doi:10.1038/s41598-020-58022-6

30. Emoto K, Takahashi K, Takao Y. Axial Momentum Gains of Ions and

Electrons in Magnetic Nozzle Acceleration. Plasma Sources Sci. Technol.

(2021) 30:115016. doi:10.1088/1361-6595/ac33ee

31. Takahashi K, Charles C, Boswell RW, Ando A. Demonstrating a New

Technology for Space Debris Removal Using a Bi-directional Plasma

Thruster. Sci Rep (2018) 8:14417. doi:10.1038/s41598-018-32697-4

32. Takao Y, Takahashi K. Numerical Validation of Axial Plasma Momentum Lost

to a Lateral Wall Induced by Neutral Depletion. Phys Plasmas (2015) 22:

113509. doi:10.1063/1.4935903

33. Takase K, Takahashi K, Takao Y. Effects of Neutral Distribution and External

Magnetic Field on Plasma Momentum in Electrodeless Plasma Thrusters. Phys

Plasmas (2018) 25:023507. doi:10.1063/1.5015937

34. Birdsall C, Langdon A. Plasma Physics via Computer Simulation. Boca Raton:

CRC Press (1991).

35. Vahedi V, Surendra M. A Monte Carlo Collision Model for the Particle-In-Cell

Method: Applications to Argon and Oxygen Discharges. Computer Phys

Commun (1995) 87:179–98. doi:10.1016/0010-4655(94)00171-W

Frontiers in Physics | www.frontiersin.org

36. Rapp D, Englander-Golden P. Total Cross Sections for Ionization and

Attachment in Gases by Electron Impact. I. Positive Ionization. J Chem

Phys (1965) 43:1464–79. doi:10.1063/1.1696957

37. Heer FJd., Jansen RHJ, Kaay Wv. d.. Total Cross Sections for Electron

Scattering by Ne, Ar, Kr and Xe. J Phys B: Mol Phys (1979) 12:979–1002.

doi:10.1088/0022-3700/12/6/016

38. Hayashi M. Determination of Electron-Xenon Total Excitation CrossSections, from Threshold to 100 eV, from Experimental Values of

Townsend’s α. J Phys D: Appl Phys (1983) 16:581–9. doi:10.1088/00223727/16/4/018

39. Takao Y, Kusaba N, Eriguchi K, Ono K. Two-dimensional Particle-In-Cell

Monte Carlo Simulation of a Miniature Inductively Coupled Plasma Source.

J Appl Phys (2010) 108:093309. doi:10.1063/1.3506536

40. Takao Y, Eriguchi K, Ono K. Effect of Capacitive Coupling in a Miniature

Inductively Coupled Plasma Source. J Appl Phys (2012) 112:093306.

doi:10.1063/1.4764333

41. Takahashi K, Charles C, Boswell R, Cox W, Hatakeyama R. Transport of

Energetic Electrons in a Magnetically Expanding Helicon Double Layer

Plasma. Appl Phys Lett (2009) 94:191503. doi:10.1063/1.3136721

42. Charles C. High Density Conics in a Magnetically Expanding Helicon Plasma.

Appl Phys Lett (2010) 96:051502. doi:10.1063/1.3309668

43. Ghosh S, Yadav S, Barada KK, Chattopadhyay PK, Ghosh J, Pal R,

et al..Formation of Annular Plasma Downstream by Magnetic Aperture in

the Helicon Experimental Device. Phys Plasmas (2017) 24:020703.

doi:10.1063/1.4975665

44. Gulbrandsen N, Fredriksen Å. Rfea Measurements of High-Energy Electrons

in a Helicon Plasma Device With Expanding Magnetic Field. Front Phys (2017)

5:2. doi:10.3389/fphy.2017.00002

45. Takahashi K, Akahoshi H, Charles C, Boswell RW, Ando A. High Temperature

Electrons Exhausted From Rf Plasma Sources along a Magnetic Nozzle. Phys

Plasmas (2017) 24:084503. doi:10.1063/1.4990110

46. Magarotto M, Pavarin D. Parametric Study of a Cathode-Less Radio Frequency

Thruster. IEEE Trans Plasma Sci (2020) 48:2723–35. doi:10.1109/

tps.2020.3006257

47. Chen FF, Sudit ID, Light M. Downstream Physics of the Helicon

Discharge. Plasma Sourc Sci. Technol. (1996) 5:173–80. doi:10.1088/

0963-0252/5/2/009

48. Cox W, Charles C, Boswell RW, Hawkins R. Spatial Retarding Field Energy

Analyzer Measurements Downstream of a Helicon Double Layer Plasma. Appl

Phys Lett (2008) 93:071505. doi:10.1063/1.2965866

49. Takahashi K, Fujiwara T. Observation of Weakly and Strongly Diverging Ion

Beams in a Magnetically Expanding Plasma. Appl Phys Lett (2009) 94:061502.

doi:10.1063/1.3080205

50. Zhang Y, Charles C, Boswell R. Effect of Radial Plasma Transport at the

Magnetic Throat on Axial Ion Beam Formation. Phys Plasmas (2016) 23:

083515. doi:10.1063/1.4960828

51. Bennet A, Charles C, Boswell R. Non-local Plasma Generation in a Magnetic

Nozzle. Phys Plasmas (2019) 26:072107. doi:10.1063/1.5098484

52. Martinez-Sanchez M, Navarro-Cavallé J, Ahedo E. Electron Cooling and Finite

Potential Drop in a Magnetized Plasma Expansion. Phys Plasmas (2015) 22:

053501. doi:10.1063/1.4919627

53. Ahedo E, Correyero S, Navarro-Cavallé J, Merino M. Macroscopic and

Parametric Study of a Kinetic Plasma Expansion in a Paraxial Magnetic

Nozzle. Plasma Sourc Sci. Technol. (2020) 29:045017. doi:10.1088/13616595/ab7855

54. Pottinger S, Lappas V, Charles C, Boswell R. Performance Characterization

of a Helicon Double Layer Thruster Using Direct Thrust Measurements.

J Phys D: Appl Phys (2011) 44:235201. doi:10.1088/0022-3727/44/23/

235201

55. Takahashi K, Lafleur T, Charles C, Alexander P, Boswell RW, Perren M,

et al. Direct Thrust Measurement of a Permanent Magnet Helicon

Double Layer Thruster. Appl Phys Lett (2011) 98:141503. doi:10.1063/

1.3577608

56. Charles C, Takahashi K, Boswell RW. Axial Force Imparted by a Conical

Radiofrequency Magneto-Plasma Thruster. Appl Phys Lett (2012) 100:113504.

doi:10.1063/1.3694281

12

December 2021 | Volume 9 | Article 779204

Emoto et al.

Energy Loss in Magnetic Nozzle

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors, and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

57. Charles C, Boswell R, Takahashi K. Boltzmann Expansion in a Radiofrequency

Conical Helicon Thruster Operating in Xenon and Argon. Appl Phys Lett

(2013) 102:223510. doi:10.1063/1.4810001

58. Williams LT, Walker MLR. Thrust Measurements of a Radio Frequency

Plasma Source. J Propulsion Power (2013) 29:520–7. doi:10.2514/

1.B34574

59. Takahashi K, Komuro A, Ando A. Operating a Magnetic Nozzle Helicon

Thruster With strong Magnetic Field. Phys Plasmas (2016) 23:033505.

doi:10.1063/1.4943406

Copyright © 2021 Emoto, Takahashi and Takao. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with

these terms.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Frontiers in Physics | www.frontiersin.org

13

December 2021 | Volume 9 | Article 779204

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る