リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「磁気ノズルスラスタにおける高周波プラズマ生成と加速の運動論的解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

磁気ノズルスラスタにおける高周波プラズマ生成と加速の運動論的解析

江本 一磨 横浜国立大学 DOI:info:doi/10.18880/00014599

2022.05.26

概要

Fully kinetic analyses were conducted to evaluate the kinetics of plasma generation and acceleration in magnetic nozzle thrusters. The momentum conversion and energy transport in the magnetic nozzle were also clarified through simulations. The main topics of this study are high-energy electron transport, internal plasma currents, axial momentum gains, and energy losses in magnetic nozzle thrusters. To perform fully kinetic simulations, a two-dimensional and symmetric calculation model was employed, including both the plasma source and diffusion region in the magnetic nozzle.

 Electron heating and density profile transitions were evaluated by changing the intensity of the magnetic field. The bimodal plasma profile observed in the previous experiments was reproduced in the simulations. The density profile transition is discussed with respect to the ionization, electron temperature, and high-energy electron number density. It is shown that high-energy electrons are transported by an elastic collision across the magnetic field lines and generate a bimodal density profile in the strong magnetic nozzle, implying a longer existing time for high-energy electrons that move radially inward away from the rf antenna.

 The internal plasma currents in the magnetic nozzle were numerically obtained in the simulations and were found to be diamagnetic and 𝑬 × 𝑩 drift effects in addition to other drift components. The diamagnetic drift current increases and becomes dominant in a strong magnetic nozzle, whereas the 𝑬 × 𝑩 drift current decreases with increasing magnetic field strength, which is consistent with previous experimental results. The electromagnetic thrust induced by the internal plasma currents was also calculated, indicating an increase in the electromagnetic thrust with increasing magnetic field intensity.

 The electrostatic and Lorentz forces in the magnetic nozzle were obtained in the simulations, and the axial ion and electron momentum gains from these forces were calculated. The simulation results show that the Lorentz force in the magnetic nozzle exceeds the electrostatic force with a strong magnetic field. In this situation, the axial electron momentum gain due to the Lorentz force also exceeds the axial ion momentum gain, implying that the axial electron momentum gain becomes dominant in the magnetic nozzle. Additionally, it was confirmed that the electron momentum gain was due to the momentum conversion from the radial to axial directions.

 The energy losses in the magnetic nozzle were calculated to further improve the thruster efficiency. The major energy loss in a weak magnetic field is the energy loss to the dielectric wall. As the magnetic field strength increased, the energy loss to the dielectric was suppressed, and the plasma beam energy contributing to thrust generation increased. Although there is essential energy loss due to electron-neutral collisions and the divergent ion beam, it is indicated that the thruster efficiency in the magnetic nozzle could be further improved by increasing the intensity of the magnetic field.

参考文献

[1] R. G. Jahn, Physics of electric propulsion (McGraw-Hill Inc., 1968).

[2] D. M. Goebel and I. Katz, Fundamentals of electric propulsion: ion and hall thrusters (John Wiley & Sons, 2008).

[3] C. Charles, J. Phys. D: Appl. Phys. 42, 163001 (2009).

[4] S. Mazouffre, Plasma Sources Sci. Technol. 25, 033002 (2016).

[5] H. Kuninaka, K. Nishiyama, I. Funaki, T. Yamada, Y. Shimizu, and J. Kawaguchi, J. Propul. Power 23, 544 (2007).

[6] K. Nishiyama and H. Kuninaka, Trans. JSASS, Aerosp. Technol. Japan 10, Tb_1 (2012).

[7] K. Nishiyama, S. Hosoda, K. Ueno, R. Tsukizaki, and H. Kuninaka, Trans. JSASS, Aerosp. Technol. Japan 14, Pb_131 (2016).

[8] K. Nishiyama, S. Hosoda, R. Tsukizaki, and H. Kuninaka, Acta Astronaut. 166, 69 (2020).

[9] J. Brophy, The dawn ion propulsion system (Springer, 2011), pp. 251–261.

[10] G. Racca, G. Whitcomb, and B. Foing, ESA bulletin 95, 72 (1998).

[11] C. Steiger, E. Montagnon, A. Accomazzo, and P. Ferri, Acta Astronaut. 170, 472 (2020).

[12] K. Toki, Y. Shimizu, and K. Kuriki, J. Propul. Power 2, 508 (1986).

[13] H. Koizumi, K. Komurasaki, J. Aoyama, and K. Yamaguchi, J. Propul. Power 34, 960 (2018).

[14] V. Kim, J. Propul. Power 14, 736 (1998).

[15] D. M. Goebel, J. E. Polk, and I. G. Mikellides, J. Propul. Power 27, 768 (2011).

[16] S. Andersen, V. O. Jensen, P. Nielsen, and N. D’Angelo, Phys. Fluids 12, 557 (1969).

[17] K. Takahashi, Rev. Mod. Plasma Phys. 3, 3 (2019).

[18] A. Fruchtman, Phys. Rev. Lett. 96, 065002 (2006).

[19] E. Ahedo and M. Merino, Phys. Plasmas 17, 073501 (2010).

[20] A. Fruchtman, K. Takahashi, C. Charles, and R. Boswell, Phys. Plasmas 19, 033507 (2012).

[21] R. W. Boswell and F. F. Chen, IEEE Trans. Plasma Sci. 25, 1229 (1997).

[22] A. Degeling, C. Jung, R. Boswell, and A. Ellingboe, Phys. Plasmas 3, 2788 (1996).

[23] T. Lafleur, C. Charles, and R. Boswell, Phys. Plasmas 17, 073508 (2010).

[24] S. Shinohara, T. Motomura, K. Tanaka, T. Tanikawa, and K. Shamrai, Plasma Sources Sci. Technol. 19, 034018 (2010).

[25] T. Lafleur, C. Charles, and R. Boswell, J. Phys. D: Appl. Phys. 44, 055202 (2011).

[26] M. Khoshhal, M. Habibi, and R. Boswell, AIP Advances 10, 065312 (2020).

[27] A. V. Arefiev and B. N. Breizman, Phys. Plasmas 15, 042109 (2008).

[28] B. W. Longmier, E. A. Bering, M. D. Carter, L. D. Cassady, W. J. Chancery, F. R. C. Daz, T. W. Glover, N. Hershkowitz, A. V. Ilin, G. E. McCaskill, et al., Plasma Sources Sci. Technol. 20, 015007 (2011).

[29] K. Takahashi, A. Chiba, A. Komuro, and A. Ando, Plasma Sources Sci. Tech. 25, 055011 (2016).

[30] X. Zhang, E. Aguirre, D. S. Thompson, J. McKee, M. Henriquez, and E. E. Scime, Phys. Plasmas 25, 023503 (2018).

[31] J. Sheehan, B. Longmier, E. Bering, C. Olsen, J. Squire, M. Ballenger, M. Carter, L. Cassady, F. C. Daz, T. Glover, et al., Plasma Sources Sci. Technol. 23, 045014 (2014).

[32] J. Little and E. Choueiri, Phys. Rev. Lett. 117, 225003 (2016).

[33] Y. Zhang, C. Charles, and R. Boswell, Phys. Rev. Lett. 116, 025001 (2016).

[34] J. Y. Kim, K. Chung, S. Kim, J. H. Ryu, K.-J. Chung, and Y. Hwang, New J. Phys. 20, 063033 (2018).

[35] K. Takahashi, C. Charles, R. Boswell, and A. Ando, Phys. Rev. Lett. 120, 045001 (2018).

[36] S. Correyero, J. Jarrige, D. Packan, and E. Ahedo, Plasma Sources Sci. Technol. 28, 095004 (2019).

[37] J. Y. Kim, J. Y. Jang, K. Chung, K.-J. Chung, and Y. Hwang, Plasma Sources Sci. Technol. 28, 07LT01 (2019).

[38] K. Takahashi, C. Charles, R. W. Boswell, and A. Ando, Phys. Rev. Lett. 125, 165001 (2020).

[39] J. Y. Kim, G. Go, Y. Hwang, and K.-J. Chung, New J. Phys. 23, 052001 (2021).

[40] E. Hooper, J. Propul. Power 9, 757 (1993).

[41] A. V. Arefiev and B. N. Breizman, Phys. Plasmas 12, 043504 (2005).

[42] B. Breizman, M. Tushentsov, and A. Arefiev, Phys. Plasmas 15, 057103 (2008).

[43] C. A. Deline, R. D. Bengtson, B. N. Breizman, M. R. Tushentsov, J. E. Jones, D. G. Chavers, C. C. Dobson, and B. M. Schuettpelz, Phys. Plasmas 16, 033502 (2009).

[44] E. Ahedo and M. Merino, Phys. Plasmas 18, 053504 (2011).

[45] M. Merino and E. Ahedo, Plasma Sources Sci. Technol. 23, 032001 (2014).

[46] K. Takahashi and A. Ando, Phys. Rev. Lett. 118, 225002 (2017).

[47] J. Little and E. Choueiri, Phys. Rev. Lett. 123, 145001 (2019).

[48] S. Hepner, B. Wachs, and B. Jorns, Appl. Phys. Lett. 116, 263502 (2020).

[49] A. V. Arefiev and B. N. Breizman, Phys. Plasmas 11, 2942 (2004).

[50] E. Bering, F. Chang-Diaz, J. Squire, M. Brukardt, T. Glover, R. Bengtson, V. Jacobson, G. McCaskill, and L. Cassady, Advances in Space Research 42, 192 (2008).

[51] E. Bering III, F. C. Daz, J. Squire, T. Glover, M. Carter, G. McCaskill, B. Longmier, M. Brukardt, W. Chancery, and V. Jacobson, Phys. Plasmas 17, 043509 (2010).

[52] B. N. Wachs and B. Jorns, Plasma Sources Sci. Technol. 29, 045002 (2020).

[53] C. Charles, R. Boswell, and M. Lieberman, Appl. Phys. Lett. 89, 261503 (2006).

[54] F. N. Gesto, B. D. Blackwell, C. Charles, and R. W. Boswell, J. Propul. Power 22, 24 (2006).

[55] C. Charles, Plasma Sources Sci. Technol. 16, R1 (2007).

[56] C. Charles, R. Boswell, W. Cox, R. Laine, and P. MacLellan, Appl. Phys. Lett. 93, 201501 (2008).

[57] C. Charles, R. Boswell, P. Alexander, C. Costa, O. Sutherland, L. Pfitzner, R. Franzen, J. Kingwell, A. Parfitt, P.-E. Frigot, et al., IEEE Trans. Plasma Sci. 36, 1196 (2008).

[58] C. Charles and R. W. Boswell, IEEE Trans. Plasma Sci. 36, 2141 (2008).

[59] W. Cox, C. Charles, R. Boswell, and R. Hawkins, Appl. Phys. Lett. 93, 071505 (2008).

[60] F. Gesto, C. Charles, and R. Boswell, IEEE Trans. Plasma Sci. 36, 1194 (2008).

[61] C. Charles, R. Boswell, R. Laine, and P. MacLellan, J. Phys. D: Appl. Phys. 41, 175213 (2008).

[62] M. D. West, C. Charles, and R. W. Boswell, J. Propul. Power 24, 134 (2008).

[63] M. D. West, C. Charles, and R. W. Boswell, J. Phys. D: Appl. Phys. 42, 245201 (2009).

[64] M. D. West, C. Charles, and R. W. Boswell, Rev. Sci. Inst. 80, 053509 (2009).

[65] C. Charles, W. Cox, R. Boswell, R. Laine, and M. Perren, Plasma Sources Sci. Technol. 19, 045003 (2010).

[66] J. Ling, M. West, T. Lafleur, C. Charles, and R. Boswell, J. Phys. D: Appl. Phys. 43, 305203 (2010).

[67] W. Cox, C. Charles, R. W. Boswell, R. Laine, and M. Perren, J. Propul. Power 26, 1045 (2010).

[68] W. Cox, R. Hawkins, C. Charles, R. W. Boswell, R. Laine, and M. Perren, IEEE Trans. Plasma Sci. 39, 2460 (2011).

[69] S. Pottinger, V. Lappas, C. Charles, and R. Boswell, J. Phys. D: Appl. Phys. 44, 235201 (2011).

[70] K. Takahashi, T. Lafleur, C. Charles, P. Alexander, R. Boswell, M. Perren, R. Laine, S. Pottinger, V. Lappas, T. Harle, et al., Appl. Phys. Lett. 98, 141503 (2011).

[71] T. Harle, S. Pottinger, and V. Lappas, Plasma Sources Sci. Technol. 22, 015015 (2012).

[72] Y. Zhang, C. Charles, and R. Boswell, Phys. Plasmas 21, 063511 (2014).

[73] K. Takahashi, Y. Takao, and A. Ando, Appl. Phys. Lett. 113, 034101 (2018).

[74] K. Takahashi, Y. Takao, and A. Ando, Plasma Sources Sci. Technol. 28, 085014 (2019).

[75] K. Takahashi, T. Sugawara, and A. Ando, Sci. Rep. 10, 1061 (2020).

[76] R. Imai and K. Takahashi, Appl. Phys. Lett. 118, 264102 (2021).

[77] K. Takahashi, Sci. Rep. 11, 2768 (2021).

[78] R. Imai and K. Takahashi, J. Phys. D: Appl. Phys. 55, 135201 (2021).

[79] K. Takahashi, C. Charles, and R. W. Boswell, Phys. Rev. Lett. 110, 195003 (2013).

[80] W. Cox, R. Hawkins, C. Charles, and R. Boswell, IEEE Trans. Plasma Sci. 36, 1386 (2008).

[81] C. Charles, Appl. Phys. Lett. 96, 051502 (2010).

[82] K. Takahashi, C. Charles, R. Boswell, W. Cox, and R. Hatakeyama, Appl. Phys. Lett. 94, 191503 (2009).

[83] Y. Zhang, C. Charles, and R. Boswell, Phys. Plasmas 23, 083515 (2016).

[84] Y. Zhang, C. Charles, and R. Boswell, J. Phys. D: Appl. Phys. 50, 015205 (2017).

[85] N. Gulbrandsen and Å. Fredriksen, Front. Phys. 5, 2 (2017).

[86] K. Takahashi, H. Akahoshi, C. Charles, R. W. Boswell, and A. Ando, Phys. Plasmas 24, 084503 (2017).

[87] A. Bennet, C. Charles, and R. Boswell, Phys. Plasmas 26, 072107 (2019).

[88] B. Tian, M. Merino, and E. Ahedo, Plasma Sources Sci. Technol. 27, 114003 (2018).

[89] S. Ghosh, S. Yadav, K. Barada, P. Chattopadhyay, J. Ghosh, R. Pal, and D. Bora, Phys. Plasmas 24, 020703 (2017).

[90] S. Yadav, S. Ghosh, S. Bose, K. Barada, R. Pal, and P. K. Chattopadhyay, Phys. Plasmas 25, 043518 (2018).

[91] S. Rao and N. Singh, Phys. Plasmas 19, 093507 (2012).

[92] N. Singh, S. Rao, and P. Ranganath, Phys. Plasmas 20, 032111 (2013).

[93] Z. Chen, Y. Wang, H. Tang, J. Ren, M. Li, P. Wu, and J. Cao, Plasma Sources Sci. Technol. 30, 105012 (2021).

[94] K. Takahashi, T. Lafleur, C. Charles, P. Alexander, and R. W. Boswell, Phys. Rev. Lett. 107, 235001 (2011).

[95] M. Merino and E. Ahedo, Plasma Sources Sci. Technol. 25, 045012 (2016).

[96] Y. Hu, Z. Huang, Y. Cao, and Q. Sun, Plasma Sources Sci. Technol. 30, 075006 (2021).

[97] R. Winglee, T. Ziemba, L. Giersch, J. Prager, J. Carscadden, and B. Roberson, Phys. Plasmas 14, 063501 (2007).

[98] M. Magarotto, D. Melazzi, and D. Pavarin, J. Plasma Phys. 85, 905850404 (2019).

[99] M. Magarotto, D. Melazzi, and D. Pavarin, Comput. Phys. Comm. 247, 106953 (2020).

[100] M. Magarotto and D. Pavarin, IEEE Trans. Plasma Sci. 48, 2723 (2020).

[101] N. Souhair, M. Magarotto, F. Ponti, and D. Pavarin, AIP Advances 11, 115016 (2021).

[102] J. J. Ramos, M. Merino, and E. Ahedo, Phys. Plasmas 25, 061206 (2018).

[103] M. Merino, J. Nuez, and E. Ahedo, Plasma Sources Sci. Technol. 30, 115006 (2021).

[104] Z. Chen, Y. Wang, H. Tang, J. Ren, M. Li, Z. Zhang, S. Cao, and J. Cao, Phys. Rev. E 101, 053208 (2020).

[105] K. Takase, K. Takahashi, and Y. Takao, Phys. Plasmas 25, 023507 (2018).

[106] K. Takahashi, C. Charles, R. W. Boswell, and A. Ando, Sci. Rep. 8, 14417 (2018).

[107] N. Fisch, Y. Raitses, and A. Fruchtman, Plasma Phys. Control. Fusion 53, 124038 (2011).

[108] R. W. Hockney and J. W. Eastwood, Computer simulation using particles (IOP Publishing, 1988).

[109] C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation (CRC press, 1991).

[110] L. Brieda, Plasma simulations by example (CRC Press, 2019).

[111] Y. Takao, N. Kusaba, K. Eriguchi, and K. Ono, J. Appl. Phys. 108, 093309 (2010).

[112] Y. Takao, K. Eriguchi, and K. Ono, J. Appl. Phys. 112, 093306 (2012).

[113] V. Vahedi and M. Surendra, Comput. Phys. Comm. 87, 179 (1995).

[114] P. Burger, Phys. Fluids 10, 658 (1967).

[115] Y. Takao and K. Takahashi, Phys. Plasmas 22, 113509 (2015).

[116] F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B: At. Mol. Phys. 12, 979 (1979).

[117] M. T. Hayashi, J. Phys. D: Appl. Phys. 16, 581 (1983).

[118] D. Rapp and P. EnglanderGolden, J. Chem. Phys. 43, 1464 (1965).

[119] M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998).

[120] S. Saha, S. Chowdhury, M. Janaki, A. Ghosh, A. K. Hui, and S. Raychaudhuri, Phys. Plasmas 21, 043502 (2014).

[121] N. Oudini, R. Tadjine, M. M. Alim, and A. Bendib, Phys. Plasmas 26, 113505 (2019).

[122] S. Li, C. Yuan, J. Yao, I. P. Kurlyandskaya, M. Koepke, V. Demidov, A. Kudryavtsev, and Z. Zhou, Plasma Sources Sci. Technol. 29, 077001 (2020).

[123] J. M. Little and E. Y. Choueiri, Phys. Plasmas 20, 103501 (2013).

[124] T. Lafleur, Phys. Plasmas 21, 043507 (2014).

[125] L. T. Williams and M. L. Walker, IEEE Trans. Plasma Sci. 43, 1694 (2015).

[126] I. D. Kaganovich, A. Smolyakov, Y. Raitses, E. Ahedo, I. G. Mikellides, B. Jorns, F. Taccogna, R. Gueroult, S. Tsikata, A. Bourdon, et al., Phys. Plasmas 27, 120601 (2020).

[127] K. Emoto, K. Takahashi, and Y. Takao, Phys. Plasmas 28, 093506 (2021).

[128] T. Lafleur, C. Charles, and R. Boswell, Phys. Plasmas 17, 043505 (2010).

[129] K. Takahashi, T. Sugawara, and A. Ando, New J. Phys. 22, 073034 (2020).

[130] T. Lafleur, K. Takahashi, C. Charles, and R. Boswell, Phys. Plasmas 18, 080701 (2011).

[131] F. Chen and H. Torreblanca, Plasma Phys. Control. Fusion 49, A81 (2007).

[132] K. Takahashi, K. Oguni, H. Yamada, and T. Fujiwara, Phys. Plasmas 15, 084501 (2008).

[133] V. F. Virko, Y. V. Virko, V. M. Slobodyan, and K. P. Shamrai, Plasma Sources Sci. Technol. 19, 015004 (2010).

[134] D. D. Cara and D. Estublier, Acta Astronaut. 57, 250 (2005).

[135] D. Pidgeon, R. Corey, B. Sauer, and M. Day, in 24th AIAA International Communications Satellite Systems Conference (2006), p. 5353.

[136] E. E. Scime, P. A. Keiter, M. M. Balkey, R. F. Boivin, J. L. Kline, M. Blackburn, and S. P. Gary, Phys. Plasmas 7, 2157 (2000).

[137] E. Aguirre, R. Bodin, N. Yin, T. Good, and E. Scime, Phys. Plasmas 27, 123501 (2020).

[138] K. Takahashi, A. Chiba, A. Komuro, and A. Ando, Phys. Rev. Lett 114, 195001 (2015).

[139] F. F. Chen, I. D. Sudit, and M. Light, Plasma Sources Sci. Technol. 5, 173 (1996).

[140] K. Takahashi and T. Fujiwara, Appl. Phys. Lett. 94, 061502 (2009).

[141] M. Martinez-Sanchez, J. Navarro-Cavallé, and E. Ahedo, Phys. Plasmas 22, 053501 (2015).

[142] E. Ahedo, S. Correyero, J. Navarro-Cavallé, and M. Merino, Plasma Sources Sci. Technol. 29, 045017 (2020).

[143] C. Charles, K. Takahashi, and R. Boswell, Appl. Phys. Lett. 100, 113504 (2012).

[144] C. Charles, R. Boswell, and K. Takahashi, Appl. Phys. Lett. 102, 223510 (2013).

[145] L. T. Williams and M. L. Walker, J. Propul. Power 29, 520 (2013).

[146] K. Takahashi, A. Komuro, and A. Ando, Phys. Plasmas 23, 033505 (2016).

[147] M. Li, M. Merino, E. Ahedo, and H. Tang, Plasma Sources Sci. Technol. 28, 034004 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る