リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electron loss mechanisms in a miniature microwave discharge water neutralizer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electron loss mechanisms in a miniature microwave discharge water neutralizer

Yosuke Sato Hiroyuki Koizumi 40361505 Masakatsu Nakano 90315169 Yoshinori Takao 80552661 横浜国立大学

2020.06

概要

This study analyzes the mechanism of electron loss at the discharge chamber wall of a microwave discharge neutralizer via three-dimensional particle-in-cell simulations with Monte Carlo collisions (PIC–MCCs). The neutralizer employs electron cyclotron resonance discharges with two ring-shaped permanent magnets and 4.2-GHz microwaves, where the plasma is confined by a magnetic mirror. The PIC–MCC simulation results show that the electron extraction efficiency of a water neutralizer can be increased by two times in an optimized magnetic field configuration, which is a higher increased rate than that of a xenon neutralizer. However, the efficiency of 20% is still low (e.g., less than half of the xenon one) because many electrons are lost to the magnet surface. The loss is determined to be due to approximately 5-times higher ratio of electrons inside the loss cone in the water neutralizer than that in the xenon neutralizer. The electron velocity distributions of each neutralizer clearly show that the water neutralizer has a larger fraction of electrons parallel to the magnetic field than the xenon neutralizer. This result is attributed to the large number of electron collisions in the water neutralizer owing to the high neutral gas pressure.

この論文で使われている画像

参考文献

A. T. Sugiarto and M. Sato, Thin Solid Films 386, 295 (2001).

M. Sato, Plasma Sources Sci. Technol. 17, 024021 (2008).

J. Oh, K. Kawamura, B. K. Pramanik, and A. Hatta, IEEE Trans. Plasma Sci.

37, 107 (2009).

B. Sun, M. Sato, and J. S. Clements, Environ. Sci. Technol. 34, 509 (2000).

S. V. T. Nguyen, J. E. Foster, and A. D. Gallimore, Rev. Sci. Instrum. 80,

083503 (2009).

R. A. Rudder, G. C. Hudson, J. B. Posthill, R. E. Thomas, R. C. Hendry, D. P.

Malta, R. J. Markunas, T. P. Humphreys, and R. J. Nemanich, Appl. Phys. Lett.

60, 329 (1992).

H. Koizumi, Y. Kawazoe, K. Komurasaki, and Y. Arakawa, Vacuum 80, 1234

(2006).

E. M. Petro and R. J. Sedwick, J. Propul. Power 33, 1410 (2017).

J. E. Brandenburg, J. Kline, and D. Sullivan, IEEE Trans. Plasma Sci. 33, 776

(2005).

10

A. Poghosyan and A. Golkar, Prog. Aerosp. Sci. 88, 59 (2017).

11

Y. Nakagawa, D. Tomita, H. Koizumi, and K. Komurasaki, Trans. Jpn. Soc.

Aeronaut. Space Sci. Aerosp. Technol. Jpn. 16, 673 (2018).

12

Y. Nakagawa, H. Koizumi, H. Kawahara, and K. Komurasaki, Acta Astronaut.

157, 294 (2019).

13

H. Koizumi, K. Komurasaki, J. Aoyama, and K. Yamaguchi, Trans. Jpn. Soc.

Aeronaut. Space Sci. Aerosp. Technol. Jpn. 12, Tb_19 (2014).

14

H. Koizumi, H. Kawahara, K. Yaginuma, J. Asakawa, Y. Nakagawa, Y. Nakamura,

S. Kojima, T. Matsuguma, R. Funase, J. Nakatsuka, and K. Komurasaki, Trans.

Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 14, Pb_13 (2016).

15

Y. Sato, H. Koizumi, M. Nakano, and Y. Takao, J. Appl. Phys. 126, 243302

(2019).

27, 063505-7

Physics of Plasmas

16

Y. Takao, H. Koizumi, K. Komurasaki, K. Eriguchi, and K. Ono, Plasma

Sources Sci. Technol. 23, 064004 (2014).

17

K. Nakamura, Y. Nakagawa, H. Koizumi, and Y. Takao, Trans. Jpn. Soc.

Aeronaut. Space Sci. 61, 152 (2018).

18

K. Nakamura, H. Koizumi, M. Nakano, and Y. Takao, Phys. Plasmas 26,

043508 (2019).

19

K. Hiramoto, Y. Nakagawa, H. Koizumi, and Y. Takao, Phys. Plasmas 24,

064504 (2017).

20

C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation

(IOP Publishing, Bristol, UK, 1991).

21

Y. Takao, H. Koizumi, Y. Kasagi, and K. Komurasaki, Trans. Jpn. Soc.

Aeronaut. Space Sci. Aerosp. Technol. Jpn. 14, Pb_41 (2016).

22

Y. Takao, K. Eriguchi, and K. Ono, J. Appl. Phys. 112, 093306 (2012).

23

E. Kawamura, M. A. Lieberman, A. J. Lichtenberg, and P. Chabert, J. Vacuum

Sci. Technol., A 38, 023003 (2020).

24

F. Taccogna, P. Minelli, Z. Asadi, and G. Bogopolsky, Plasma Sources Sci.

Technol. 28, 064002 (2019).

Phys. Plasmas 27, 063505 (2020); doi: 10.1063/5.0002336

Published under license by AIP Publishing

ARTICLE

scitation.org/journal/php

25

S. L. Guo, X. L. Jin, L. Lei, X. Y. Zhang, X. F. Zhu, Z. H. Yang, and B. Li, Phys.

Plasmas 26, 073502 (2019).

26

V. Vahedi and M. Surendra, Comput. Phys. Commun. 87, 179 (1995).

27

K. Nanbu, IEEE Trans. Plasma Sci. 28, 971 (2000).

28

M. Panjan and A. Anders, J. Appl. Phys. 121, 063302 (2017).

29

T. Lafleur, S. D. Baalrud, and P. Chabert, Plasma Sources Sci. Technol. 26,

024008 (2017).

30

M. Keidar, I. D. Boyd, and I. I. Beilis, Phys. Plasmas 8, 5315 (2001).

31

T. Lafleur, R. Martorelli, P. Chabert, and A. Bourdon, Phys. Plasmas 25, 061202

(2018).

32

A. Hecimovic, J. Phys. D 49, 18LT01 (2016).

33

X. Liu, L. Chen, W. Gu, and X.-J. Zhang, J. Geophys. Res. Space 123, 9035,

https://doi.org/10.1029/2018JA025925 (2018).

34

F. H. Ebersohn, J. P. Sheehan, A. D. Gallimore, and J. V. Shebalin, J. Comput.

Phys. 351, 358 (2017).

35

Y. Takao, N. Kusaba, K. Eriguchi, and K. Ono, J. Appl. Phys. 108, 093309

(2010).

27, 063505-8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る