リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A study on spin mechanics phenomena in spin-lattice coupled systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A study on spin mechanics phenomena in spin-lattice coupled systems

Arisawa, Hiroki 東北大学

2023.03.24

概要

(別紙様式5)












(NO.1)





有沢 洋希

提出年

令和 4 年

学位論文の

Study on spin mechanics phenomena in spin-lattice coupled systems



(磁気-歪み結合系におけるスピンメカニクス現象に関する研究)



論 文 目 次
1

Research background

5

1.1 Introduction and research motivation…..…….……………………………………….................. 5
1.2 Structure of thesis …….………….………………………………………………............................ 6
1.3 Spin dynamics………….………….……………………………………………................................ 7
1.3.1 Conduction-electron spin current…….………………………………………….................. 7
1.3.2 Spin Hall effect................................................................................................................. 8
1.3.3 LLG equation.................................................................................................................... 9
1.3.4 Spin transfer torque ....................................................................................................... 10
1.4 Lattice dynamics.......................................................................................................................11
1.4.1 Mechanics of elasticity.................................................................................................... 11
1.4.2 Mechanical motion of mechanical oscillator ……...........................................................19
1.5 Spin-lattice coupled dynamics................................................................................................. 21
1.5.1 Magnetoelastic energy ................................................................................................... 21
1.5.2 Magnetostriction ............................................................................................................ 24
1.5.3 Morphotropic phase transition....................................................................................... 26
2

Experimental methods

39

2.1 Physical properties of samples .............................................................................................. 39
2.1.1 Ferrimagnetic insulatorY3Fe5O12 ................................................................................. 39
2.1.2 Ferromagnet Tb0.3Dy0.7Fe2 ............................................................................................ 40
2.2 Sample fabrication ................................................................................................................. 42
2.2.1 Focused ion bean method ….......................................................................................... 42
2.2.2 Electroplating method ................................................................................................... 42
2.3 Mechanical response measurement with laser Doppler vibrometer.................................... 44
2.3.1 Laser Doppler vibrometry ............................................................................................. 44
2.3.2 Measurement system .................................................................................................... 45
2.4 Ultrafast spin/lattice dynamics measurement with femtosecond laser................................47
2.4.1 Time-resolved magneto-optical Kerr effect detection....................................................47
2.4.2 Time-resolved reflectivity detection ...............................................................................49

(別紙様式5)

3

Magnetomechanical coupling in magnetic micro mechanical oscillator

(NO. 2)

50

3.1 Fabrication of YIG micro bridge by FIB method ...................................................................50
3.1.1 Fabrication process of YIG micro bridge........................................................................51
3.1.2 Evaluation of sample damage by Ga+ ion beam irradiation .........................................51
3.2 Mechanical property of YIG micro bridge...............................................................................53
3.2.1 Mechanical vibration spectrum .....................................................................................53
3.2.2 Spatial profile of mechanical vibration..........................................................................55
3.3 Magnetic property of YIG micro bridge ..................................................................................56
3.4 Magnetic field dependence of mechanical vibration spectrum..............................................57
3.5 Theoretical analysis .................................................................................................................59
3.5.1 Change in Young’s modulus due to magnetization rotation .........................................59
3.5.2 Field dependence of resonance frequency......................................................................63
3.5.3 Physical origin ................................................................................................................64
3.6 Summary...................................................................................................................................65
4

Spin current volume effect in spin-lattice coupled system

66

4.1 Spin current volume effect ......................................................................................................66
4.2 Evaluation of film properties...................................................................................................68
4.2.1 Chemical composition ....................................................................................................69
4.2.2 Magnetization process ...................................................................................................70
4.2.3 Magnetostriction ............................................................................................................71
4.2.4 Resistivity........................................................................................................................71
4.3 Spin-current mechanical response in Tb0.3Dy0.7Fe2 ...............................................................72
4.3.1 Mechanical vibration spectrum .....................................................................................72
4.3.2 Field dependence of observed mechanical signal ..........................................................73
4.3.3 Paramagnetic metal dependence .................................................................................. 75
4.3.4 Field angle dependence ................................................................................................. 75
4.4 Theoretical calculation of spin current volume effect ............................................................76
4.4.1 Modulation of magnetization angle................................................................................77
4.4.2 Modulation of thermal fluctuations of magnetization...................................................79
4.4.3 Spin current volume effect by magnetization fluctuation modulation........................ 84
4.5 Origin of observed mechanical signal .................................................................................... 86
5

Ultrafast spin-lattice dynamics in magnetostrictive material

88

5.1 Excitation and detection of spin-lattice dynamics by femtosecond laser ..............................88
5.2 Magnetization process of Tb0.3Dy0.7Fe2 film............................................................................89
5.3 Ultrafast magnetization dynamics ..........................................................................................90
5.3.1 Temporal change in magneto-optical Kerr signal..........................................................90

(別紙様式5)

(NO. 3)

5.3.2 Magnetic field dependence..............................................................................................91
5.3.3 Sample composition dependence ....................................................................................92
5.4 Ultrafast strain dynamics........................................................................................................93
5.4.1 Temporal change in reflectivity.......................................................................................93
5.4.2 Magnetic field dependence ..............................................................................................94
5.4.3 Thickness dependence .....................................................................................................95
5.4.4 Theoretical analysis.........................................................................................................96
5.5 Summary...................................................................................................................................96
6

Conclusion

98

7

References

100

8

Acknowledgement

107

9

List of publications and presentations

111

(別紙様式5)

(NO. 4)

The field of spin mechanics is a research area that explores the cross-correlation between spin
angular momentum and mechanical motion in a solid. Spin angular momentum, lattice motion, and
mechanical motion interact with each other via magnetoelastic coupling, and spin mechanical
coupling is realized. While extensive studies on spin mechanics phenomena have been carried out
due to their high applicability for magnetic control of mechanical motions, further experimental
elucidation of the basic physics is still indispensable. Behind this situation, there is an issue that
the detection of the spin mechanical coupling is difficult due to the weak magnetoelastic coupling in
a solid. If this issue is overcome, it should be possible to investigate the basic spin mechanical
phenomena.
The purpose of the present research is to explore spin mechanical coupling phenomena and to
clarify their physical mechanism. For this aim we performed three experiments in spin-lattice
coupled systems. ...

参考文献

100

Acknowledgement

107

List of publications and presentations

111

(別紙様式5)

(NO. 4)

The field of spin mechanics is a research area that explores the cross-correlation between spin

angular momentum and mechanical motion in a solid. Spin angular momentum, lattice motion, and

mechanical motion interact with each other via magnetoelastic coupling, and spin mechanical

coupling is realized. While extensive studies on spin mechanics phenomena have been carried out

due to their high applicability for magnetic control of mechanical motions, further experimental

elucidation of the basic physics is still indispensable. Behind this situation, there is an issue that

the detection of the spin mechanical coupling is difficult due to the weak magnetoelastic coupling in

a solid. If this issue is overcome, it should be possible to investigate the basic spin mechanical

phenomena.

The purpose of the present research is to explore spin mechanical coupling phenomena and to

clarify their physical mechanism. For this aim we performed three experiments in spin-lattice

coupled systems. In the first research, we focused on a micro magnetic mechanical oscillator, which

should be able to sensitively detect the spin mechanical coupling. By fabricating a micro mechanical

oscillator made from a magnetic insulator, we tried to detect the coupling between the magnetization

and the mechanical vibration in the oscillator. In the second research, we chose a rare-earth and iron

alloy system that exhibits a giant spin-lattice coupling, and challenged to modulate the volume of

the system by using a spin current. In the third research, by using the pump and probe technique

with a femtosecond laser, we investigated the ultrafast spin-lattice coupled dynamics in a

ferromagnet.

The structure of the thesis is shown below. In Chapter 1, we introduced the background of the

field of spin mechanics and described the main aim of the present research. After this section, we

explain the basic physics and previous studies on spin systems, lattice systems, and spin-lattice

coupled systems, which is necessary to understand spin-mechanical coupling phenomena.

In Chapter 2, we describe the physical properties and the fabrication methods of the samples

used in the experiments. We also explain the measurement principle of the spin-lattice coupling

phenomena, which is realized by using a laser Doppler vibrometer and a femtosecond-laser pump

and probe technique.

In Chapter 3, we discuss experimental results on the cross-correlation effect between the

magnetization and the mechanical vibration in a micro magnetic mechanical oscillator. By

fabricating a micro mechanical oscillator made from a magnetic insulator Y3Fe5O12 (YIG) and

measuring the mechanical response of the YIG oscillator, we found that the resonant mechanical

vibration is modulated in accordance with the magnetization process in the YIG oscillator.

Systematic experiments and theoretical analysis using magnetoelastic free energy revealed that the

observed changes in the mechanical properties of the oscillator originate from the Young’s modulus

modulation due to the coherent magnetization rotation.

In Chapter 4, we explain the study on a volume modulation effect in a magnet by using a spin

current, spin current volume effect. By injecting a spin current into a giant magnetostrictive

material Tb0.3Dy0.7Fe2, we observed that a Tb0.3Dy0.7Fe2 film exhibits the thickness change in

response to the spin current injection. By comparing the experimental results and magnetoelastic

(別紙様式5)

(NO. 5)

theoretical modeling, we demonstrated that the observed thickness change of the Tb0.3Dy0.7Fe2 film

is attributed to the thermal magnetization fluctuation change in the film induced by the spin current

injection.

In Chapter 5, we show the observation of the ultrafast spin-lattice coupled dynamics in a

Tb0.3Dy0.7Fe2 film. By using the femtosecond-laser pump and probe technique, we explored the

ultrafast magnetization and strain dynamics excited by the laser heating. By combining the

systematic experiments and theoretical analysis we clarified that the magnetization amplitude

temporally oscillates in response to the elastic strain generated by the pump laser.

In Chapter 6, we summarize the obtained experimental results and conclusions.

Our findings accelerate to explore cross-correlation phenomena between spintronics and

micromechanics and provide an insight for expanding the field of spin mechanics into a new field

that includes spin-current related phenomena and ultrafast spin-lattice dynamics.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る