リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「広葉樹辺材の道管相互壁孔に観察される被覆物に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

広葉樹辺材の道管相互壁孔に観察される被覆物に関する研究

山岸, 松平 北海道大学

2023.03.23

概要

樹木の枝や幹、根の大部分を占める木部組織は、生きている樹木にとっては、根から吸
収した水分やミネラルを樹冠へと長距離輸送する場として重要であり、またこれを木材と
して産業利用する我々人類にとっては、高い比強度や加工性とともに断熱性や音響特性な
どの様々な特性を有したマテリアルとして有用である。木部組織のほとんどは、分化の過
程で死滅して内容物を失った中空の細胞(仮道管、道管要素、木部繊維)で構成されている。
生体内では、これらの細胞の内腔を満たした水の連続体が、蒸散に由来する張力に引き上
げられることによって効率的な水輸送が可能となっている。植物の生育には水が必須であ
り、植物がいかに木部の通水を制御し、乾燥や凍結などに起因する水ストレスに応答して
それを維持しているかを知ることは、植物水分生理学の主要なテーマの1つである。一方、
産業的な木材利用において、耐朽性や強度の付与を目的に木材に薬剤や合成樹脂を注入す
ることがあり、これには、木部細胞の内腔にいかに薬剤を浸透させられるかが重要な関心
事になってくる。このような木部組織における水分の移動(水分通導)を理解するには、
木部組織内を構成する各細胞がどのように連絡して水分の移動経路を構築しているのか、
またその水分の移動がどのように制御されているのかといった基礎的な議論がなされる
必要がある。
木部組織を構成する細胞のうち、とりわけ水分通導に大きく寄与するのは、管状要素と
称される仮道管と道管要素である。仮道管は、細長い紡錘形をした細胞であり、その末端
は閉じられている。道管要素は一般に仮道管よりも短く径が大きい細胞で、その決定的な
特徴として末端の壁の一部またはほとんどが分解されたせん孔を有している。このせん孔
により各道管要素が上下に隣接する道管要素と連なって、長くパイプ状に伸びた道管を形
成する。 ...

この論文で使われている画像

参考文献

Aasamaa K, Sober A. 2010. Sensitivity of stem and petiole hydraulic conductance of

deciduous trees to xylem sap ionic concentration. Biologia Plantarum 54: 299–307.

Améglio T, Bodet C, Lacointe A, Cochard H. 2002. Winter embolism, mechanisms of xylem

hydraulic conductivity recovery and springtime growth patterns in walnut and peach

trees. Tree Physiology 22: 1211–1220.

Améglio T, Decourteix M, Alves G, Valentin V, Sakr S, Julien J-L, et al. 2004. Temperature

effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter

embolism repair. Tree Physiology 24: 785–793.

Angeles G, Owens SA, Ewers FW. 2004. Fluorescence shell: a novel view of sclereid

morphology with the Confocal Laser Scanning Microscope. Microscopy Research and

Technique 63: 282–288.

青木弾, 松下泰幸, 福島和彦. 2016. Cryo-TOF-SIMS による植物試料のケミカルイメージング.

表面化学 37: 599–603.

APG. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and

families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–

20.

Bailey IW. 1913. The preservative treatment of wood. II. The structure of the pit membranes

in the tracheids of conifers and their relation to the penetration of gases, liquids, and

finely divided solids into green and seasoned wood. Forest Quarterly 11: 12–20.

Bailey IW. 1916. The structure of the bordered pits of conifers and its bearing upon the

tension hypothesis of the ascent of sap in plants. Botanical Gazette 62: 133–142.

174

Bailey IW. 1933. The cambium and its derivative tissues No. VIII. Structure, distribution,

and diagnostic significance of vestured pits in dicotyledons. Journal of Arnold

Arboretum 4: 259–273.

Bailey IW. 1944. The development of vessels in angiosperms and its significance in

morphological research. American Journal of Botany 31: 421–428.

Bailey IW, Tupper WW. 1918. Size variation in tracheary cells: I. A comparison between the

secondary xylems of vascular cryptogams, gymnosperms, and angiosperms.

Proceedings of the American Academy of Arts and Sciences 54: 149–204.

Bauch J, Brendt H. 1973. Variability of the chemical composition of pit membranes in

bordered pits of gymnosperms. Wood Science and Technology 7: 6–19.

Black-Schaefer CL, Beckmann RL. 1989. Foliar flavonoids and the determination of ploidy

and gender in Fraxinus americana and F. pennsylvanica (Oleaceae). Castanea 54: 115–

118.

Bland DE, Foster RC, Logan AF. 1971. The mechanism of permanganate and osmium

tetroxide fixation and the distribution of lignin in the cell wall of Pinus radiata.

Holzforschung 25:137–143.

Bonner LD, Thomas RJ. 1972. The ultrastructure of intercellular passageways in vessels of

yellow poplar (Liriodendron tulipifera L.). Part I: vessel pitting. Wood Science and

Technology 6: 196–203.

Bonsen KJ. 1991. Gefässverschluss-mechanismen in laubbäumen. vierteljahrsschrift der

naturforschenden Gesellschaft in Zürich 136: 13–50.

Bonsen KJ, Kučera LJ. 1990. Vessel occlusions in plants: Morphological, functional and

evolutionary aspects. IAWA Journal 11: 393–399.

175

Boura A, De Franceschi D. 2007. Is porous wood structure exclusive of deciduous trees?

Comptes Rendus Palevol 6: 385–391.

Braun HJ. 1967. Development and structure of wood rays in view of contact-isolationdifferentiation to hydrosystem. Holzforschung 21: 33–37.

Carlquist S. 1988. Comparative wood anatomy. Springer-Verlag. Berlin, Germany.

Catesson AM. 1983. A cytochemical investigation of the lateral walls of Dianthus vessels.

Differentiation and pit membrane formation. IAWA Bulletin 4: 89–101.

Catesson AM, Czaninski Y, Moreau M, Peresse M. 1979. Conséquences d’une infection

vasculaire sur la maturation des vaisseaux. Revue de Mycologie 43: 239–243.

Chattaway MM. 1949. The development of tyloses and secretion of gum in·heartwood

formation. Australian Journal of Biological Science 2: 227–240.

Choat B, Ball M, Luly J, Holtum J. 2003. Pit membrane porosity and water stress-induced

cavitation in four co-existing dry rainforest tree species. Plant Physiology 131: 41–48.

Choat B, Brodie TW, Cobb AR, Zwieniecki MA, Holbrook NM. 2006. Direct measurements

of intervessel pit membrane hydraulic resistance in two angiosperm tree species.

American Journal of Botany 93: 993–1000.

Choat B, Cobb AR, Jansen S. 2008. Structure and function of bordered pits: New discoveries

and impacts on whole-plant hydraulic function. New Phytologist 177: 608–626.

Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS,

Gleason SM, Hacke UG, et al. 2012. Global convergence in the vulnerability of forests

to drought. Nature 491: 752–755.

176

Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. 2004. Changes in pit membrane

porosity due to deflection and stretching: The role of vestured pits. Journal of

Experimental Botany 55: 1569–1575.

Christman MA, Sperry JS, Adler FR. 2009. Testing the‘rare pit’ hypothesis for xylem

cavitation resistance in three species of Acer. New Phytologist 182: 664–674.

Christman MA, Sperry JS, Smith DD. 2012. Rare pits, large vessels and extreme

vulnerability to cavitation in a ring-porous tree species. New Phytologist 193: 713–

720.

Clermont LP. 1961. The fatty acid of aspen poplar, basswood, yellow birch and white birch.

Pulp and Paper Magazine of Canada: T511–T514.

Cochard H, Herbette S, Hernández E, Hölttä T, Menuccini M. 2010. The effects of sap ionic

composition on xylem vulnerability to cavitation. Journal of Experimental Botany 61:

275–285.

Cochard H, Tyree MT. 1990. Xylem dysfunction in Quercus: vessel size, tyloses, cavitation

and seasonal changes in embolism. Tree Physiology 6: 393–407.

Côte WA. 1958. Electron microscope studies of pit membrane structure, implications in

seasoning and preservation of wood. Forest Products Journal 8:296–301.

Crombie D, Milburn J, Hipkins M. 1985. Maximum sustainable xylem sap tensions in

Rhododendron and other species. Planta 163: 27–33.

Czaninski Y. 1977. Vessel-associated cells. IAWA Bullentin 1977/3: 51–55.

Czaninski Y. 1979. Cytochimie ultrastructurel des parois du xylème secondaire. Biologie

Cellulaire 35: 97–102.

177

Dixson HH, Joly J. 1894. On the ascent of sap. Philosophical Transactions of the Royal

Society B: Biological Sciences 186: 563–576.

De Micco V, Balzano A, Wheeler EA, Baas P. 2016. Tylose and gums: a review of structure,

function and occurrence of vessel occulisions. IAWA Journal 37: 186–205.

Donaldson LA. 1992. Lignin distribution during latewood formation in Pinus radiata D.

Don. IAWA Journal 13: 381–387.

Dute RR. 2015. Development, structure, and function of torus–margo pits in conifers,

Ginkgo and dicots. In: Hacke UG (ed.), Functional and ecological xylem anatomy

Springer, Cham, Switzerland: 77–102.

van Doorn WG, Hiemstra T, Fanourakis D. 2011. Hydrogel regulation of xylem water flow:

an alternative hypothesis. Plant Physiology 157: 1642–1649.

Ellmore GS, Ewers FW. 1986. Fluid flow in the outermost xylem increment of a ringporous tree, Ulmus americana. American Journal of Botany: 1771–1774.

Fitzgerald CH, Reines M. A 1969. Comparative study of the flavonoid content of Fraxinus

americana and Fraxinus pennsylvanica. Castanea 34: 192–194.

藤田稔. 小路嘉明, 原田浩. 1977. ネムノキとヤマザクラの道管のゴム状物質による閉そく.

京都大学農学部演習林報告 49: 116–121.

Gagnon C. 1967. Histochemical studies on the alteration of lignin and pectic substances in

white elm infected by Ceratocystis ulmi. Canadian Journal of Botany 45: 1619–1623.

Gascó A, Salleo S, Gortan E, Nardini A. 2007. Seasonal changes in the ion-mediated

increase of xylem hydraulic conductivity in stems of three evergreens: any functional

role? Physiologia Plantarum 129: 597–606.

178

Gortan E, Nardini A, Salleo S, Jansen S. 2011. Pit membrane chemistry influences the

magnitude of ion-mediated enhancement of xylem hydraulic conductivity in four

Lauraceae. Tree Physiology 31: 48–58.

Greenaway W, English S, Wollenweber E, Whatley FR. 1989. Series of novel flavanones

identified by gas chromatography-mass spectrometry in bud exudate of Populus

fremontii and Populus maximowiczii. Journal of Chromatography A 481: 352–357.

Hacke UG, Sauter JJ. 1996. Xylem dysfunction during winter and recovery of hydraulic

conductivity in diffuse-porous and ring-porous trees. Oecologia 105: 435–439.

Hacke UG, Sperry JS, Pittermann J. 2004. Analysis of circular bordered pit function II.

Gymnosperm tracheids with torus-margo pit membranes. American Journal of Botany

91: 386–400.

Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA. 2001. Cavitation fatigue.

Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant

Physiology 125: 779–786.

原田浩, 宮崎幸男, 若島妙子. 1957. 木材の細胞膜構造の電子顕微鏡的研究. 林業試験場研究

報告 104: 3–115.

Harrak H, Chamberland H, Plante M, Bellemare G, Lafontaine JG, Tabaeizadeh Z. 1999.

A proline-, threonine-, and glycine-rich protein down-regulated by drought is localized

in the cell wall of xylem elements. Plant Physiology 121: 557–564.

Herbette S, Bouchet B, Brunel N, Bonnin E, Cochard H, Guillon F. 2015. Immunolabelling

of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic

properties in Populus tremula × alba. Annals of Botany 115: 187–199.

179

Hillabrand RM, Hacke UG, Lieffers VJ. 2016. Drought-induced xylem pit membrane

damage in aspen and balsam poplar. Plant, Cell and Environment 39: 2210–2220.

Hillinger C, Höll W, Ziedler H. 1996. Lipids and lipolytic enzymes in the trunkwood of

Robinia pseudoacacia L. during heartwood formation. Trees 10: 366–375.

Hillis WE. 1987. Heartwood and tree exudates. Springer-Verlag, Berlin, Germany.

Hoch G, Richter A, Körner C. 2003. Non-structural carbon compounds in temperate forest

trees. Plant, Cell and Environment 26: 1067–1081.

Höll W, Poschenrieder G. 1975. Radial distribution and partial characterization of lipids in

the trunk of three hardwoods. Holzforschung 29: 118–123.

Höll W, Priebe S. 1985. Storage lipids in the trunk- and rootwood of Tilia cordata Mill. from

the dormant to the growing period. Holzforschung 39: 7–10.

平井信二. 1996.『木の大百科』朝倉書店, 東京, 日本.

IAWA Comittiee. 1989. IAWA list of microscopic features for hardwood identification with

an Appendix on non-anatomical information. IAWA Bulletin n.s. 10: 221–332.

van Ieperen W, van Meeteren U, van Gelder H. 2000. Fluid ionic composition influences

hydraulic conductance of xylem conduits. Journal of Experimental Botany 51: 769–776.

Jansen S, Choat B, Pletsers A. 2009. Morphological variation of intervessel pit membranes

and implications to xylem function in angiosperms. American Journal of Botany 96:

409–419.

Jansen S, Choat B, Vinckier S, Lens F, Schols P, Smets E. 2004. Intervascular pit

membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera. New

Phytologist 163: 51–59.

180

Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, TrifilòP, Nardini A.

2011. Do quantitative vessel and pit characters account for ion-mediated changes in

the hydraulic conductance of angiosperm xylem? New Phytologist 189: 218–228.

Jansen S, Sano Y, Choat B, Rabaey D, Lens F, Dute RR. 2007. Pit membranes in tracheary

elements of Rosaceae and related families: New records of tori and pseudotori.

American Journal of Botany 94: 503–514.

Jarbeau JA, Ewers FW, Davis SD. 1995. The mechanism of water ‐ stress ‐ induced

embolism in two species of chaparral shrubs. Plant, Cell & Environment 18: 189–196.

Jiménez-Sánchez C, Lozano-Sánchez J, Rodríguez-Pérez C, Segura-Carretero A,

Fernández-Gutiérrez A. 2016. Comprehensive, untargeted, and qualitative RP-HPLCESI-QTOF/MS2 metabolite profiling of green asparagus (Asparagus officinalis).

Journal of Food Composition and Analysis 46: 78–87.

Kaack L, Altaner CM, Carmesin C, Diaz A, Holler M, Kranz C, et al. 2019. Function and

three-dimensional structure of intervessel pit membranes in angiosperms: a review.

IAWA Journal 40: 673–702.

Kallio H, Ahtonen S. 1987. Seasonal variations of the sugars in birch sap. Food Chemistry

25: 293–304.

Kasmi S, Hamdi A, Atmani-Kilani D, Debbache-Benaida N, Jaramillo-Carmona S,

Rodríguez-Arcos R, et al. 2021. Characterization of phenolic compounds isolated from

the Fraxinus angustifolia plant and several associated bioactivities. Journal of Herbal

Medicine 29. DOI: 10.1016/j.hermed.2021.100485

Kasuga J, Hashidoko Y, Nishioka A, Yoshiba M, Arakawa K, Fujikawa S. 2008. Deep

supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum)

181

contain flavonol glycosides exhibiting high anti-ice nucleation activity. Plant, Cell and

Environonment 31: 1335–1348.

Kim JS, Daniel G. 2013. Developmental localization of homogalacturonan and xyloglucan

epitopes in pit membranes varies between pit types in two poplar species. IAWA journal

34: 245–262.

Kim JS, Daniel G. 2016. Distribution of phenolic compunds, pectins and hemicelluloses in

mature pit membranes and its variation between pit types and in English oak xylem

(Quercus rober). IAWA Journal 37: 402–419.

Kininmouth JA. 1972. Permeability and fine structure of certain hardwoods and effects on

drying II. Differences in fine structure of Nothofagus fusca sapwood and heartwood.

Holzforschung 26: 32–38.

基太村洋子. 1982. 酸性染料の木材内部への浸透(第 1 報) 木材浸透性染料の選定. 林産試験場

研究報告 319: 47–68.

Kleen M, Kangas H, Laine C. 2003. Chemical characterization of mechanical pulp fines and

fiber surface layers. Nordic Pulp and Paper Research Journal 18: 361–368.

Koch G, Richter H-G, Schmitt U. 2006. Topochemical investigation on phenolic deposits in

the vessels of afzelia (Afzelia spp.) and merbau (Intsia spp.) heartwood. Holzforchung

60: 583–588.

Kostova I, Iossifova T. 2007. Chemical components of Fraxinus species. Fitoterapia 78: 85–

106.

Kotowska MM, Thom R, Zhang Y, Schenk HJ, Jansen S. 2020. Within-tree variability and

sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus.

Trees 34: 61–71.

182

Kramer PJ, Kozlowski TT. 1960. Physiology of trees. McGraw-Hill BOOK. New York, USA.

Kuroda K, Fujiwara T, Imai T, Takama R, Saito K, Matsushita Y, Fukushima K. 2013. The

cryo-TOF-SIMS/SEM system for the analysis of the chemical distribution in freezefixed Cryptomeria japonica wood. Surface and Interface Analysis 45: 215–219.

久住聡, 甲賀大輔, 柴田昌宏, 渡部剛. 2020. 切片 SEM 法と連続切片 SEM 法. 顕微鏡 55: 18–

22.

Lee HS, Park SH, Wallander E, Chang C-S. 2012. A flavonoid survey of Fraxinus (Oleaceae)

in eastern Asia, and the overlooked species Fraxinus hopeiensis T. Tang in northern

China. Biochemical Systematics and Ecology 41: 150–156.

Lee J, Holbrook NM, Zwieniecki MA. 2012. Ion induced changes in the structure of bordered

pit membranes. Frontiers in Plant Science 3. DOI: 10.3389/fpls.2012.00055.

Lee YK, Alexander D, Wulff J, Olsen JE. 2014. Changes in metabolite profiles in Norway

spruce shoot tips during short-day induced winter bud development and long-day

induced bud flush. Metabolomics 10: 842–858.

Leng P, Itamura H, Yamamura H, Deng XM. 2000. Anthocyanin accumulation in apple and

peach shoots during cold acclimation. Scientia Horticulturae 83: 43–50.

Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses

that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus

Acer. New Phytologist 190: 709–723.

Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ, Schmitt M, Schuldt B, Jansen S.

2016. Intervessel pit membrane thickness as a key determinant of embolism resistance

in angiosperm xylem. IAWA journal 37: 152–171.

183

Li Z, Ohno N, Terada N, Daoyuan Z, Yoshimura A, Ohno S. 2006. Application of periodic

acid-Schiff fluorescence emission for immunohistochemistry of living mouse renal

glomeruli by an “in vivo cryotechnique.” Archives of Hitology and Cytology 69: 147–161.

Liese W. 1965. The fine structure of bordered pits in softwood. In: Côte WA (ed.). Cellular

ultrastructure of woody plants. Syracuse University Press, New York, USA: 271–290.

Livingston DP, Henson CA. 1998. Apoplastic sugars, fructans, fructan exohydrolase, and

invertase in winter oat: responses to second-phase cold hardening. Plant Physiology

116: 403–408.

López-Portillo J, Ewers F, Angeles G. 2005. Sap salinity effects on xylem conductivity in

two mangrove species. Plant, Cell and Environment 28: 1285–1292.

Ludovici M, Ialongo C, Reverberi M, Beccaccioli M, Scarpari M, Scala V. 2014. Quantitative

profiling of oxylipins through comprehensive LC-MS/MS analysis of Fusarium

verticillioides and maize kernels. Food Additives and Contaminants - Part A Chemistry,

Analysis, Control, Exposure and Risk Assessment 31: 2026–2033.

Mabry TJ, Markham KR, Thomas MB. 1970. The ultraviolet spectra of flavones and

flavonols. In: Mabry TJ, Markham KR, Thomas MB, editors. The systematic

identification of flavonoids. Berlin, Heidelberg: Springer Berlin Heidelberg: 41–164.

Maherali H, Pockman WT, Jackson RB. 2004. Adaptive variation in the vulnerability of

woody plants to xylem cavitation. Ecology 85: 2184–2199.

Masumi T, Matsushita Y, Aoki D, Takama R, Saito K, Kuroda K, Fukushima K. 2014.

Adsorption behavior of poly(dimethyl-diallylammonium chloride) on pulp fiber studied

by cryo-time-of-flight secondary ion mass spectrometry and cryo-scanning electron

microscopy. Applied Surface Science 289: 155–159.

184

宮地洋, 真鍋明義, 徳森恒雄, 隅田葉子, 吉田隆志, 西部三省ほか. 1987. 超臨界流体抽出の生

薬, 植物成分への応用(第 2 報)クマリン, リグナン及びプレニルフラボノイドについて.

薬学雑誌 107: 435–439.

村田源. 1989. モクセイ科. 佐竹義輔, 原寛, 亘理俊次, 冨成忠夫(編).『日本の野生植物:木

本Ⅱ』平凡社, 東京, 日本: 175–183.

Morris H, Plavcová L, Gorai M, Klepsch MM, Kotowska M, Jochen Schenk H, et al. 2018.

Vessel-associated cells in angiosperm xylem: Highly specialized living cells at the

symplast-apoplast boundary. American Journal of Botany 105: 151–160.

Nakaba S, Kubo T, Funada R. 2008. Differences in patterns of cell death between ray

parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida.

Trees 22: 623–630.

Nardini A, Salleo S, Jansen S. 2011. More than just a vulnerable pipeline: xylem physiology

in the light of ion-mediated regulation of plant water transport. Journal of

Experimental Botany 62: 4701–4718.

Nardini A, Dimasi F, Klepsch M, Jansen S. 2012. Ion-mediated enhancement of xylem

hydraulic conductivity in four Acer species: relationships with ecological and

anatomical features. Tree Physiology 32: 1434–1441.

O’Brien TP. 1970. Further observations on hydrolysis of the cell wall in the xylem.

Protoplasma 69: 1–14.

O’Brien TP, Feder N, McCully ME. 1964. Polychromatic staining of plant cell walls by

toluidine blue O. Protoplasma 59: 368–373.

185

O’Brien TP, Thimann KV. 1967. Observations on the fine structure of the oat coleoptile. III.

Correlated light and electron microscopy of the vascular tissues. Protoplasma 63: 443–

478.

Oda Y, Fukuda H. 2012. Initiation of cell wall pattern by a Rho- and microtubule-driven

symmetry breaking. Science 337: 1333–1336.

Ohtani J, Ishida S. 1978. Pit membrane with torus in dicotyledonous woods. Mokuzai

Gakkaishi 24: 673–675.

Ohtani J, Jing W, Fukazawa K, Qun XS. 1989. Multiple perforation plates in Gmelina

arborea Roxb. (Verbenaceae). IAWA Journal 10: 35–41.

朴杓允 1992. 植物細胞の試料作製法. 医学・生物学電子顕微鏡技術研究会(編).『よくわかる

電子顕微鏡技術』朝倉書店: 37–45.

Pereira L, Flores-Borges DNA, Bittencourt PRL, Mayer JLS, Kiyota E, Araújo P, et al. 2018.

Infrared nanospectroscopy reveals the chemical nature of pit membranes in waterconducting cells of the plant xylem. Plant Physiology 177: 1629–1638.

Pérez-Donoso AG, Sun Q, Roper MC, Greve LC, Kirkpatrick B, Labavitch JM. 2010. Cell

wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy

and Xylella fastidiosa-infected grapevines. Plant Physiology 152: 1748–1759.

Pesacreta TC, Groom LH, Rials TG. 2005. Atomic force microscopy of the intervessel pit

membrane in the stem of Sapium sebiferum (Euphorbiaceae). IAWA journal 26: 397–

426.

Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, et al. 2013. Plant

flavonoids--biosynthesis, transport and involvement in stress responses. International

Journal of Molecular Sciences 14: 14950–14973.

186

Piispanen R, Saranpää P. 2004. Seasonal and within-stem variations of neutral lipids in

silver birch (Betula pendula) wood. Tree Physiology 24: 991–999.

Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S. 1995. Improved

performance of transgenic fructan-accumulating tobacco under drought stress. Plant

Physiology 107: 125–130.

Plavcová L, Hacke UG. 2011. Heterogeneous distribution of pectin epitopes and calcium in

different pit types of four angiosperm species. New Phytologist 192: 885–897.

Plavcová L, Hacke UG, Sperry JS. 2011. Linking irradiance-induced changes in pit

membrane ultrastructure with xylem vulnerability to cavitation. Plant, Cell and

Environment 34: 501–513.

Pockman WT, Sperry JS. 2000. Vulnerability to xylem cavitation and the distribution of

Sonoran desert vegetation. American Journal of Botany 87: 1287–1299.

Rioux D, Nicole M, Simard M, Ouellette GB. 1998. Immunocytochemical evidence that

secretion of pectin occurs during gel (gum) and tylosis formation in trees.

Phytopathology 88: 494–505.

Rummukainen A, Julkunen-Tiitto R, Räisänen M, Lehto T. 2007. Phenolic compounds in

Norway spruce as affected by boron nutrition at the end of the growing season. Plant

Soil 292: 13–23.

Saitoh T, Ohtani J, Fukazawa K. 1993. The occurrence and morphology of tyloses and gums

in the vessels of Japanese hardwoods. IAWA Journal 14: 359–371.

Sano Y. 2004. Intervascular pitting across the annual ring boundary in Betula platyphylla

var. japonica and Fraxinus mandshurica var. japonica. IAWA journal 25: 129–140.

187

Sano Y. 2005. Inter- and intraspecific structural variations among intervascular pit

membranes, as revealed by field-emission scanning electron microscopy. American

Journal of Botany 92: 1077–1084.

佐野雄三. 2009. 広葉樹材における管状要素間壁孔の構造と機能. 木材学会誌 55: 119–128.

佐野雄三 2011. 壁孔と修飾構造. 日本木材学会(編)

『木質の構造』. 文永堂出版: 96–107.

Sano Y. 2016. Bordered pit structure and cavitation resistance in woody plants. In: Kim YS,

Funada R, Singh AP (eds.). Secondary Xylem Biology. Elsevier, Cambridge, USA: 113–

130.

Sano Y, Fukazawa K. 1994. Structural variations and secondary changes in pit membranes

in Fraxinus mandshurica var. japonica. IAWA Journal 15: 283–291.

Sano Y, Kawakami Y, Ohtani J. 1999. Variation in the structure of intertracheary pit

membranes in Abies sacalinensis, as observed by field-emission scanning electron

microscopy. IAWA Journal 20: 375–88.

Sano Y, Nakada R. 1998. Time course of the secondary deposition of incrusting materials on

bordered pit membranes in Cryptomeria japonica. IAWA Journal 19: 285–299.

Sano Y, Utsumi Y, Ohtani J. 1998. Seasonal changes in the structure of intervessel and

vessel-parenchyma pit membranes in Fraxinus mandshurica var. japonica. IAWA

Journal 19: 477.

Sanz M, de Simón BF, Cadahía E, Esteruelas E, Muñoz AM, Hernández T, et al. 2012. LCDAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F.

americana L.) heartwood. Effect of toasting intensity at cooperage. Journal of Mass

Spectrometry 47: 905–918.

188

Sasaki T, Fukuda H, Oda Y. 2017. CORTICAL MICROTUBULE DISORDERING1 is

required for secondary cell wall patterning in xylem vessels. The Plant Cell 29: 3123–

3139.

Sauter JJ, Iten W, Zimmermann MH. 1973. Studies on the release of sugar into the vessels

of sugar maple (Acer saccharum). Canadian Journal of Botany 51: 1–8.

Schenk HJ, Espino S, Rich-Cavazos SM, Jansen S. 2018. From the sap’s perspective: The

nature of vessel surfaces in angiosperm xylem. American Journal of Botany 105: 172–

185.

Schenk HJ, Espino S, Romo DM, Nima N, Do AYT, Michaud JM, PapahadjopoulosSternberg B, Yang J, Zuo YY, Steppe K, et al. 2017. Xylem surfactants introduce a new

element to the cohesion-tension theory. Plant Physiology 173: 1177–1196.

Schenk HJ, Jansen S, Hölttä T. 2021. Positive pressure in xylem and its role in hydraulic

function. New Phytologist 230: 27–45.

Schenk HJ, Steppe K, Jansen S. 2015. Nanobubbles: A new paradigm for air-seeding in

xylem. Trends in Plant Science 20: 199–205.

Schmid R. 1965. The fine structure of pits in hardwood. In: Côte WA (ed.). Cellular

ultrastructure of woody plants. Syracuse University Press, New York, USA: 291–304.

Schmid R, Machado RD. 1968. Pit membranes in hardwoods—fine structure and

development. Protoplasma 66: 185–204.

Si CL, Xu GH, Huang XF, Du ZG, Wu L, Hu WC. 2016. Phytochemical investigation of

hydroalcoholic extractives from branches of Fraxinus velutina. Chemistry of Natural

Compounds 52: 132–133.

嶋田玄彌. 1940. トネリコ属植物樹皮の成分. 薬学雑誌 60: 508–510.

189

嶋田玄彌. 1952a. トネリコ属植物樹皮成分の研究(第3報)デワトネリコ, ナガミノトネリコ,

ホソバアオダモ, カントウトネリコの樹皮成分. 薬学雑誌 72: 63–65.

嶋田玄彌. 1952b. トネリコ属植物樹皮成分の研究(第4報)ヤチダモ, オクエゾヤチダモの樹

皮成分. 薬学雑誌 72: 65–67.

嶋田玄彌. 1952c. トネリコ属植物樹皮成分の研究(第5報)コバチの樹皮成分. 薬学雑誌 72:

67–69.

嶋田玄彌. 1952d. トネリコ属植物樹皮成分の研究(第6報)オオトネリコ, ヤマトアオダモ,

アラゲアオダモ, ビロウドアオダモの樹皮成分. 薬学雑誌 72: 498–500.

嶋田玄彌. 1952e. トネリコ属植物樹皮成分の研究(第7報)シオジの樹皮成分. 薬学雑誌 72:

501–504.

Singh A, Dawson B, Franich R, Cowan F, Warnes J. 1999. The relationship between pit

membrane ultrastructure and chemical impregnability of wood. Holzforschung 53:

341–346.

Sinnott EW. 1918. Factors determining character and distribution of food reserve in woody

plants. Botanical Gazette 66: 162–175.

Sperry JS, Donnely JR, Tyree MT. 1988. A method for measuring hydraulic conductivity

and embolism in xylem. Plant, Cell and Environment 11: 35–40.

Sperry JS, Hacke UG. 2004. Analysis of circular bordered pit function I. Angiosperm vessels

with homogenous pit membranes. American Journal of Botany 91: 369–385.

Sperry JS, Hacke UG, Wheeler JK. 2005. Comparative analysis of end wall resistivity in

xylem conduits. Plant, Cell and Environment 28: 456–465.

190

Sperry JS, Sullivan JE. 1992. Xylem embolism in response to freeze-thaw cycles and water

stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology100: 605–

613.

Sperry JS, Tyree MT. 1988. Mechanism of water stress-induced xylem embolism. Plant

physiology 88: 581–587.

Sun Q. 2022. Structural variation and spatial polysaccharide profiling of intervessel pit

membranes in grapevine. Annals of Botany 130: 595–609.

Takabe K, Fujita M, Harada H, Saiki H. 1981. Lignification process of Japanese black pine

(Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi 36: 424–428.

Terazawa M. 1986. Phenolic compounds in living tissues of woods VII. (+)-Pinoresinol

monoglucoside in Fraxinus mandshurica Rupr. var. japonica Maxim. (Oleaceae).

Journal of the Faculty of Agriculture, Hokkaido University 62: 415–428.

寺沢実, 笹谷宜志. 1968. ヤチダモの抽出成分に関する研究(第 1 報):樹皮におけるクマリン

誘導体およびその他の化合物について. 北海道大学農学部演習林研究報告 26:171–202.

Terazawa M, Sasaya T. 1970. Studies on the extractives of Yachidamo, Fraxinus

Mandshurica Rupr. var. japonica Maxim. II. Glucosides in bark. Mokuzai Gakkaishi

16: 192–199.

Terazawa M, Sasaya T. 1971. Extractives of Yachidamo, Fraxinus mandshurica Rupr. var.

japonica Maxim. III. Extractives of wood; phenolic compounds in sapwood. Mokuzai

Gakkaishi 17: 167–173.

Terazawa M, Sasaya T. 1986. Phenolic compounds in living tissues of woods VIII. Olivil

from the sapwood of yachidamo, Fraxinus mandshurica Rupr. var. japonica Maxim.

Research Bulletins of the College Experiment Forests 43: 803–814.

191

Thomas RJ. 1975. The effect of polyphenol extraction on enzyme degradation of bordered

pit tori. Wood and Fiber Scienece 7: 207–215.

Thomas RJ. 1976. Anatomical features affecting liquid penetrability in three hardwood

species. Wood and Fiber Science 7:256–263.

Turrini F, Donno D, Beccaro GL, Pittaluga A, Grilli M, Zunin P, et al. 2020. Bud-derivatives,

a novel source of polyphenols and how different extraction processes affect their

composition. Foods 9. DOI: 10.3390/foods9101343.

豊岡公徳. 2016. 光―電子相関顕微鏡法:蛍光タンパク質標識した細胞小器官を走査電子顕微

鏡で捉える. Plant morphology 28: 15–21.

Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA. 2003. Desiccation tolerance of five

tropical seedlings in Panama. Relationship to a field assessment of drought

performance. Plant Physiology 132: 1439–1447.

Tyree MT, Fiscus EL, Wullschleger SD, Dixon MA. 1986. Detection of xylem cavitation in

corn under field conditions. Plant Physiology 82: 597–599.

Tyree MT, Zimmermann MH. 2002. Xylem structure and the ascent of Sap. 2nd edition.

Springer-Verlag, Berlin, Germany.

Umebayashi T, Utsumi Y, Koga S, Inoue S, Fujikawa S, Arakawa K, et al. 2008. Conducting

pathways in north temperate deciduous broadleaved trees. IAWA Journal 29: 247–263.

Umebayashi T, Utsumi Y, Koga S, Inoue S, Matsumura J, Oda K, et al. 2010. Xylem waterconducting patterns of 34 broadleaved evergreen trees in southern Japan. Trees 24:

571–583.

鵜野哲郎. 2014. 一部広葉樹において走査電子顕微鏡で存否を確認できる抽出成分に関する研

究. 北海道大学農学部森林科学科 樹木生物学研究室 平成 25 年度卒業論文.

192

Utsumi Y, Sano Y, Fujikawa S, Funada R, Ohtani J. 1998. Visualization of cavitated vessels

in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron

microscopy. Plant Physiology 117: 1463–1471.

Utsumi Y, Sano Y, Funada R, Fujikawa S, Ohtani J. 1999. The progression of cavitation in

earlywood vessels of Fraxinus mandshurica var japonica during freezing and thawing.

Plant Physiology 121: 897–904.

Utsumi Y, Sano Y, Ohtani J, Fujikawa S. 1996. Seasonal changes in the distribution of water

in the outer growth rings of Fraxinus mandshurica var. japonica: A study by cryoscanning electron microscopy. IAWA Journal 17: 113–124.

Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant

Systematics and Evolution 273: 25–49.

Wallander E. 2012 Systematics and floral evolution in Fraxinus (Oleaceae). Belgische

Dendrologie Belge 2012.: 39–58.

Watanabe Y, Ohno Y. 2020. Severe insect defoliation at different timing affects cell wall

formation of tracheids in secondary xylem of Larix kaempferi. Trees ;34: 931–941.

Watanabe Y, Sano Y, Asada T, Funada R. 2006. Histochemical study of the chemical

composition of vestured pits in two species of Eucalyptus. IAWA Journal 27: 33–43.

Wheeler EA. 1981. Intervascular pitting in Fraxinus americana L. IAWA Bulletin n.s. 2:

169–174.

Wheeler ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る