リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Simple bulk reconstruction in anti-de Sitter/conformal field theory correspondence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Simple bulk reconstruction in anti-de Sitter/conformal field theory correspondence

Terashima, Seiji 京都大学 DOI:10.1093/ptep/ptad054

2023.05

概要

In this paper, we show that bulk reconstruction in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence is rather simple and has an intuitive picture, by showing that the HKLL (Hamilton-Kabat-Lifschytz-Lowe) bulk reconstruction formula can be simplified. We also reconstruct the wave packets in the bulk theory from the CFT primary operators. With these wave packets, we discuss the causality and duality constraints and find our picture is the only consistent one. Our picture of the bulk reconstruction can be applied to the asymptotic AdS spacetime.

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

G. ’t. Hooft, Conf. Proc. C 930308, 284–296 (1993) [arXiv:gr-qc/9310026] [Search inSPIRE].

L. Susskind, J. Math. Phys. 36, 6377–6396 (1995) [arXiv:hep-th/9409089] [Search INSPIRE].

J. M. Maldacena, Adv. Theor. Math. Phys 2, 231 (1998) [arXiv:hep-th/9711200] [Search INSPIRE].

T. Banks, M. R. Douglas, G. T. Horowitz, and E. J. Martinec, [arXiv:hep-th/9808016] [Search IN

SPIRE].

[5] V. Balasubramanian, P. Kraus, and A. E. Lawrence, Phys. Rev. D 59, 046003 (1999) [arXiv:hepth/9805171] [Search INSPIRE].

[6] I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, JHEP 0910, 079 (2009)

[arXiv:0907.0151[hep-th]] [Search INSPIRE].

30

The free scalar commutator itself is not nonzero for a time-like separation; however, it is singular on

the light-cone, which dominates the commutator if we regularize the local operators by a smearing.

25/27

Downloaded from https://academic.oup.com/ptep/article/2023/5/053B02/7143131 by KYOTO UNIVERSITY Medical Library user on 01 August 2023

where t = (x − π )/2. If we regard the integrand as a periodic function, it is singular at x = 0.

Note that it is regular if ( − d)/2 is a non-negative integer and eiπ = 1, but these two conditions are not consistent with d = odd. Thus, for large n the contribution from the region near x =

0 is dominant because the contributions from the smooth function are exponentially suppressed

for large n. Because the integrand behaves near x = 0 like ((x) + const.)|x| − d for eiπ = 1

or |x| − d for eiπ = 1, the contribution from the region near x = 0 for large n is O(1/n−d+1 ).

Combining these with ψnlCF T → n−d/2 , we find φ(ρ = 0, t = 0) = n O(nd/2−1 ) aˆ†n00 + h.c..

The summation n O(nd/2−1 ) diverges, and then the time integral of Eq. (A43) is localized

on an arbitrary small region containing t = ±π /2.

For d = even, the smearing function includes the log cos t factor and it is singular at t =

±π /2 as a periodic function. Then, for this case also, we can see that the discussions for d =

odd can be applied.

PTEP 2023, 053B02

S. Terashima

26/27

Downloaded from https://academic.oup.com/ptep/article/2023/5/053B02/7143131 by KYOTO UNIVERSITY Medical Library user on 01 August 2023

[7] A. L. Fitzpatrick and J. Kaplan, JHEP 1302, 054 (2013) [arXiv:1208.0337[hep-th]] [Search INSP

IRE].

[8] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, and K. Watanabe, Phys. Rev. Lett. 115, 171602

(2015)[arXiv:1506.01353 [hep-th]] [Search INSPIRE].

[9] Y. Nakayama and H. Ooguri, JHEP 1510, 114 (2015) [arXiv:1507.04130[hep-th] ] [Search INSPIR

E].

[10] H. Verlinde, [arXiv:1505.05069[hep-th]] [Search INSPIRE].

[11] I. Bena, Phys. Rev. D 62, 066007 (2000) [arXiv:hep-th/9905186] [Search INSPIRE].

[12] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, Phys. Rev. D 73, 086003 (2006) [arXiv:

hep-th/0506118] [Search INSPIRE].

[13] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, Phys. Rev. D 74, 066009 (2006) [arXiv:

hep-th/0606141] [Search INSPIRE].

[14] S. El-Showk and K. Papadodimas, JHEP 1210, 106 (2012) [arXiv:1101.4163[hep-th]] [Search IN

SPIRE].

[15] D. Kabat, G. Lifschytz, and D. A. Lowe, Phys. Rev. D 83, 106009 (2011) [arXiv:1102.2910[hep-th]]

[Search INSPIRE]

[16] D. Kabat, G. Lifschytz, S. Roy, and D. Sarkar, Phys. Rev. D 86, 026004 (2012)

[arXiv:1204.0126[hep-th]] [Search INSPIRE].

[17] D. Kabat and G. Lifschytz, Phys. Rev. D 87, 086004 (2013) [arXiv:1212.3788[hep-th]] [Search IN

SPIRE].

[18] A. L. Fitzpatrick, J. Kaplan, and M. T. Walters, JHEP 1408, 145 (2014) [arXiv:1403.6829[hep-th]]

[Search INSPIRE].

[19] D. Kabat and G. Lifschytz, JHEP 1509, 059 (2015) [arXiv:1505.03755[hep-th]] [Search INSPIRE].

[20] D. Kabat and G. Lifschytz, JHEP 1610, 091 (2016) [arXiv:1603.06800[hep-th]] [Search INSPIRE].

[21] K. Goto, M. Miyaji, and T. Takayanagi, JHEP 1609, 130 (2016) [arXiv:1605.02835] [hep-th] [Sear

ch INSPIRE].

[22] J. W. Kim, JHEP 1701, 131 (2017) [arXiv:1607.03605[hep-th]] [Search INSPIRE].

[23] K. Goto and T. Takayanagi, JHEP 1710, 153 (2017) [arXiv:1704.00053[hep-th]] [Search INSPIRE].

[24] V. K. Dobrev, Nucl. Phys. B 553, 559–582 (1999) [arXiv:hep-th/9812194] [Search INSPIRE].

[25] M. Duetsch and K. H. Rehren, Annales Henri Poincare 4, 613 (2003) [arXiv: math-ph/0209035]

[Search INSPIRE].

[26] S. Terashima, JHEP 1802, 019 (2018) [arXiv:1710.07298[hep-th]] [Search INSPIRE].

[27] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998) [arXiv: hepth/9802109] [Search INSPIRE].

[28] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv: hep-th/9802150] [Search INSPIRE].

[29] S. Terashima, Phys. Rev. D 104, 086014 (2021) [arXiv:2005.05962[hep-th]] [Search INSPIRE].

[30] R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus, and C. Zukowski, Phys. Rev. D 88, 064057

(2013) [arXiv:1209.4641] [hep-th] [Search INSPIRE].

[31] L. Nagano and S. Terashima, 9, 187 (2021) [arXiv:2101.04090] [hep-th] [Search INSPIRE].

[32] S. Gao and R. M. Wald, Class. Quant. Grav. 17, 4999–5008 (2000) [arXiv:gr-qc/0007021] .

[33] D. Berenstein and D. Grabovsky, Class. Quant. Grav. 38, 105008( 2021) [arXiv:2011.08934[hep-th]]

[Search INSPIRE].

[34] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006) [arXiv:hep-th/0603001] [ Search IN

SPIRE].

[35] A. C. Wall, Class. Quant. Grav. 31, 225007 (2014) [arXiv:1211.3494[hep-th] [Search INSPIRE].

[36] M. Headrick, V. E. Hubeny, A. Lawrence, and M. Rangamani, JHEP 12, 162 (2014)

[arXiv:1408.6300[hep-th]] [Search INSPIRE].

[37] B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, Class. Quant. Grav. 29, 155009

(2012) [arXiv:1204.1330[hep-th]] [Search INSPIRE].

[38] D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, JHEP 06, 004 (2016)

[arXiv:1512.06431[hep-th] [Search INSPIRE].

[39] R. Bousso, S. Leichenauer, and V. Rosenhaus, Phys. Rev. D 86, 046009 (2012)

[arXiv:1203.6619[hep-th] [Search INSPIRE].

[40] J. Polchinski, L. Susskind, and N. Toumbas, Phys. Rev. D 60, 084006 (1999) [arXiv:hep-th/9903228]

[Search INSPIRE].

PTEP 2023, 053B02

S. Terashima

27/27

Downloaded from https://academic.oup.com/ptep/article/2023/5/053B02/7143131 by KYOTO UNIVERSITY Medical Library user on 01 August 2023

[41] X. Dong, D. Harlow, and A. C. Wall, Phys. Rev. Lett. 117, 021601 (2016) [arXiv:1601.05416[hepth] [Search INSPIRE].

[42] I. A. Morrison, JHEP 05, 053 (2014) [arXiv:1403.3426[hep-th]] [Search INSPIRE].

[43] A. Almheiri, X. Dong, and D. Harlow, JHEP 04, 163 (2015) [arXiv:1411.7041[hep-th] [Search IN

SPIRE].

[44] S. Sugishita and S. Terashima, JHEP 11, 041 (2022) [arXiv:2207.06455[hep-th] [Search INSPIRE].

[45] Y. Suzuki, T. Takayanagi, and K. Umemoto, Phys. Rev. Lett. 123, 221601 (2019)

[arXiv:1908.09939[hep-th] [Search INSPIRE].

[46] A. Lewkowycz and J. Maldacena, JHEP 08, 090 (2013) [arXiv:1304.4926[hep-th] [Search INSPIR

E].

[47] T. Faulkner, A. Lewkowycz, and J. Maldacena, JHEP 11, 074 (2013) [arXiv:1307.2892[hep-th]

[Search INSPIRE].

[48] T. Hartman, [arXiv:1303.6955[hep-th]] [Search INSPIRE].

[49] J. Tsujimura, [arXiv:2011.00407[hep-th]] [Search INSPIRE].

[50] S. Terashima, JHEP 02, 021 (2020) [arXiv:1907.05419[hep-th]] [Search INSPIRE].

[51] A. Ishibashi, K. Maeda, and E. Mefford, Phys. Rev. D 100, 066008 (2019) [arXiv:1903.11806[hepth]] [Search INSPIRE].

[52] G. ’t. Hooft, Nucl. Phys. B 256, 727 (1985)

[53] N. Iizuka and S. Terashima, Nucl. Phys. B 895, 1 (2015) [arXiv:1307.5933[hep-th]] [Search INSP

IRE].

[54] S. D. Mathur, Class. Quant. Grav. 26, 224001 (2009) [arXiv:0909.1038[hep-th]] [Search INSPIRE].

[55] S. D. Mathur, Fortsch. Phys. 53, 793–827 (2005) [arXiv:hep-th/0502050] [Search INSPIRE].

[56] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, JHEP 02, 062 (2013) [arXiv:1207.3123[hep-th]]

[Search INSPIRE].

[57] J. D. Qualls, [arXiv:1511.04074[hep-th]] [Search INSPIRE].

[58] S. Rychkov, [arXiv:1601.05000[hep-th]] [Search INSPIRE].

[59] D. Simmons-Duffin, [arXiv:1602.07982[hep-th]] [Search INSPIRE].

[60] P. Breitenlohner and D. Z. Freedman, Phys. Lett. 115B, 197 (1982)

[61] X.-X. Bai and Y. Zhao J. Approx. Theor. 148, 1 (2007)

[62] S. Aoki and J. Balog, JHEP 02, 015 (2022) [arXiv:2112.04326[hep-th]] [Search INSPIRE].

[63] C. Lichen and I. Mourad, Siam J. Math. Anal. 22, 1442–1449( 1991).

[64] S. Ryu., and T. Takayanagi. JHEP 08, 045 (2006) [arXiv:hep-th/0605073] [Search INSPIRE].

[65] Y. Kusuki, Y. Suzuki, T. Takayanagi, and K. Umemoto [arXiv:1912.08423 [hep-th]] [Search INSP

IRE].

[66] N. Iizuka, A. Ishibashi, and K. Maeda JHEP 03, 161 ( 2020) [arXiv:1911.02654 [hep-th]] [Search

INSPIRE].

[67] N. Iizuka, A. Ishibashi, and K. Maeda, and JHEP 10, 106 (2020) [arXiv:2008.07942] [hep-th]]

[Search INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る