リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Locations of Rab, Allatotropin, Prothoracicotropic hormone and Period in the larval brain, corpus allatum and frontal ganglion of Bombyx mori」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Locations of Rab, Allatotropin, Prothoracicotropic hormone and Period in the larval brain, corpus allatum and frontal ganglion of Bombyx mori

Matsui, Asuka Tokushige, Makoto Mizoguchi, Akira Kanamaru, Kengo Sakamoto, Katsuhiko Uno, Yuichi Uno, Tomohide 神戸大学

2023.03.29

概要

Rab, a low molecular weight GTP-binding protein, regulates the transmission of intracellular proteins. Insect neuropeptides that are directly involved in growth, development, reproduction, homeostasis, courtship, feeding, circadian rhythm and many other physiological processes are synthesized in neurons and ganglia in the brain and secreted by specific neurosecretory cells in tissues such as the corpus allatum and frontal ganglion. To clarify the relationship between Rabs, two neuropeptides, Allatotropin (AT) and Prothoracicotropic hormone (PTTH) and the circadian clock protein, Period (PER), were used to determine the locations of nine Rabs (Rab1, Rab3, Rab6, Rab7, Rab11, Rab14, Rab19, Rab21 and RabX4). Rab6-, Rab11-, Rab14- and Rab21-immunohistochemical reactivities (IRs) partially overlapped AT-IR in the brain in B. mori. Rab3-, Rab6-, Rab11-, Rab14-, and Rab21-IRs overlapped AT-IR in the frontal ganglion. Of the seven Rabs, only Rab11-IR overlapped PTTH-IR in the brain. Rab1-, Rab3-, Rab11-, Rab14-, Rab19-, Rab21-, RabX4- and NUF (nuclear fallout, an effector of Rab11)-IRs, overlapped PER-IR in the brain. Therefore, Rab may regulate the exocytosis of PTTH, AT and a protein associated with the circadian rhythm.

この論文で使われている画像

参考文献

BARR F.A. 2013: Review series: Rab GTPases and membrane

identity: causal or inconsequential? — J. Cell Biol. 202: 191–

199.

BARR F. & LAMBRIGHT D.G. 2010: Rab GEFs and GAPs. — Curr.

Opin. Cell Biol. 22: 461–470.

BEDNAR B., ROLLER L., CIZMAR D., MITROVA D. & ZITNAN D. 2017:

Developmental and sex-specific differences in expression of

neuropeptides derived from allatotropin gene in the silkmoth

Bombyx mori. — Cell Tissue Res. 368: 259–275.

BOERJAN B., CARDOEN D., BOGAERTS A., LANDUYT B., SCHOOFS L.

& VERLEYEN P. 2010: Mass spectrometric profiling of (neuro)peptides in the worker honeybee, Apis mellifera. — Neuropharmacology 58: 248–258.

CALERO-CUENCA F.J. & SOTILLOS S. 2018: Nuf and Rip11 requirement for polarity determinant recycling during Drosophila development. — Small GTPases 9: 352–359.

CAVIGLIA S., FLORES-BENITEZ D., LATTNER J., LUSCHNIG S. &

BRANKATSCHK M. 2019: Rabs on the fly: Functions of Rab GTPases during development. — Small GTPases 10: 89–98.

DUVE H., EAST P.D. & THORPE A. 1999: Regulation of lepidopteran foregut movement by allatostatins and allatotropin from

the frontal ganglion. — J. Comp. Neurol. 413: 405–416.

ELMOGY M., MOHAMED A.A., TUFAIL M., UNO T. & TAKEDA M.

2018: Molecular and functional characterization of the American cockroach, Periplaneta americana, Rab5: the first exopterygotan low molecular weight ovarian GTPase during oogenesis. — Insect Sci. 25: 751–764.

EVA R., DASSIE E., CASWELL P.T., DICK G., FFRENCH-CONSTANT C.,

NORMAN J.C. & FAWCETT J.W. 2010: Rab11 and its effector Rab

102

doi: 10.14411/eje.2023.012

coupling protein contribute to the trafficking of beta 1 integrins

during axon growth in adult dorsal root ganglion neurons and

PC12 cells. — J. Neurosci. 30: 11654–11669.

FUJITA N., HUANG W., LIN T.H., GROULX J.F., JEAN S., NGUYEN J.,

KUCHITSU Y., KOYAMA-HONDA I., MIZUSHIMA N., FUKUDA M.

ET AL. 2017: Genetic screen in Drosophila muscle identifies

autophagy-mediated T-tubule remodeling and a Rab2 role in

autophagy. — Elife 6: e23367, 30 pp.

GARG A. & WU L.P. 2014: Drosophila Rab14 mediates phagocytosis in the immune response to Staphylococcus aureus. — Cell

Microbiol. 16: 296–310.

GOLTZENÉ F., HOLDER F., CHARLET M., MEISTER M. & OKA T. 1992:

Immunocytochemical localization of Bombyx-PTTH-like molecules in neurosecretory cells of the brain of the migratory locust, Locusta migratoria. A comparison with neuroparsin and

insulin-related peptide. — Cell Tissue Res. 269: 133–140.

GRIGORIEV I., SPLINTER D., KEIJZER N., WULF P.S., DEMMERS J.,

OHTSUKA T., MODESTI M., MALY I.V., GROSVELD F., HOOGENRAAD

C.C. ET AL. 2007: Rab6 regulates transport and targeting of exocytotic carriers. — Dev. Cell 13: 305–314.

HARDIN P.E. 2005: The circadian timekeeping system of Drosophila. — Curr. Biol. 15: R714–722.

HEUER C.M, KOLLMANN M., BINZER M. & SCHACHTNER J. 2012:

Neuropeptides in insect mushroom bodies. — Arthropod

Struct. Dev. 41:199–226.

INAMI S., SATO T. & SAKAI T. 2022: Circadian neuropeptide-expressing clock neurons as regulators of long-term memory:

Molecular and cellular perspectives. — Front. Mol. Neurosci.

15: 934222, 7 pp.

IWAI S., THI DIEU TRANG L., SEHADOVA H. & TAKEDA M. 2008:

Expression analyses of casein kinase 2alpha and casein kinase

2beta in the silkmoth, Bombyx mori. — Comp. Biochem. Physiol. (B, Biochem. Mol. Biol.) 149: 38–46.

JEAN S., COX S., NASSARI S. & KIGER A.A. 2015: Starvationinduced MTMR13 and RAB21 activity regulates VAMP8 to

promote autophagosome-lysosome fusion. — EMBO Rep. 16:

297–311.

JIN H., TANG Y., YANG L., PENG X., LI B., FAN Q., WEI S., YANG S.,

LI X., WU B. ET AL. 2021: Rab GTPases: Central coordinators

of membrane trafficking in cancer. — Front. Cell Dev. Biol. 9:

648384, 13 pp.

JING J. & PREKERIS R. 2009: Polarized endocytic transport: the

roles of Rab11 and Rab11-FIPs in regulating cell polarity. —

Histol. Histopathol. 24: 1171–1180.

JUNUTULA J.R., DE MAZIERE A.M., PEDEN A.A., ERVIN K.E., ADVANI R.J., VAN DIJK S.M., KLUMPERMAN J. & SCHELLER R.H. 2004:

Rab14 is involved in membrane trafficking between the Golgi

complex and endosomes. — Mol. Biol. Cell 15: 2218–2229.

KATAOKA H., TOSCHI A., LI J.P., CARNEY R.L., SCHOOLEY D.A. &

KRAMER S.J. 1989: Identification of an allatotropin from adult

Manduca sexta. — Science 243: 1481–1483.

KNÖDLER A., FENG S., ZHANG J., ZHANG X., DAS A., PERÄNEN J.

& GUO W. 2010: Coordination of Rab8 and Rab11 in primary

ciliogenesis. — Proc. Natl. Acad. Sci. U.S.A. 107: 6346–6351.

KOLADICH P.M., CUSSON M., BENDENA W.G., TOBE S.S. & MCNEIL

J.N. 2002: Cardioacceleratory effects of Manduca sexta allatotropin in the true armyworm moth, Pseudaletia unipuncta.

— Peptides 23: 645–651.

LI G. & MARLIN M.C. 2015: Rab family of GTPases. — Methods

Mol. Biol. 2015: 1298, 16 pp.

LIGHTHOUSE D.V., BUSZCZAK M. & SPRADLING A.C. 2008: New

components of the Drosophila fusome suggest it plays novel

roles in signaling and transport. — Dev. Biol. 317: 59–71.

MAUVEZIN C., NEISCH A.L., AYALA C.I., KIM J., BELTRAME A.,

BRADEN C.R., GARDNER M.K., HAYS T.S. & NEUFELD T.P. 2016:

Matsui et al., Eur. J. Entomol. 120: 93–104, 2023

Coordination of autophagosome-lysosome fusion and transport by a Klp98A-Rab14 complex in Drosophila. — J. Cell

Sci. 129: 971–982.

MIZOGUCHI A., ISHIZAKI H., NAGASAWA H., KATAOKA H., ISOGAI A.,

TAMURA S., SUZUKI A., FUJINO M. & KITADA C. 1987: A monoclonal antibody against a synthetic fragment of bombyxin (4Kprothoracicotropic hormone) from the silkmoth, Bombyx mori:

characterization and immunohistochemistry. — Mol. Cell Endocrinol. 51: 227–235.

MÜLLER M.P. & GOODY R.S. 2018: Molecular control of Rab activity by GEFs, GAPs and GDI. — Small GTPases 9: 5–21.

NAGARAJ R. & ADLER P.N. 2012: Dusky-like functions as a Rab11

effector for the deposition of cuticle during Drosophila bristle

development. — Development 139: 906–916.

NAGATA S., KATAOKA H. & SUZUKI A. 2005: Silk moth neuropeptide hormones: prothoracicotropic hormone and others. — Ann.

N. Y. Acad. Sci. 1040: 38–52.

NAGATA S., MATSUMOTO S., MIZOGUCHI A. & NAGASAWA H. 2012:

Identification of cDNAs encoding allatotropin and allatotropinlike peptides from the silkworm, Bombyx mori. — Peptides 34:

98–105.

NASSEL D.R. 2002: Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators

and neurohormones. — Prog. Neurobiol. 68: 1–84.

NASSEL D.R. & WINTHER A.M. 2010: Drosophila neuropeptides

in regulation of physiology and behavior. — Prog. Neurobiol.

92: 42–104.

O’BRIEN M.A., KATAHIRA E.J., FLANAGAN T.R., ARNOLD L.W,

HAUGHTON G. & BOLLENBACHER W.E. 1988: A monoclonal antibody to the insect prothoracicotropic hormone. — J. Neurosci.

8: 3247–3257.

PFEFFER S.R. 2017: Rab GTPases: master regulators that establish

the secretory and endocytic pathways. — Mol. Biol. Cell 28:

712–715.

PLUTNER H., COX A.D., PIND S., KHOSRAVI-FAR R., BOURNE J.R.,

SCHWANINGER R., DER C.J. & BALCH W.E. 1991: Rab1b regulates vesicular transport between the endoplasmic reticulum

and successive Golgi compartments. — J. Cell Biol. 115: 31–

43.

RIGGS B., FASULO B., ROYOU A., MISCHE S., CAO J., HAYS T.S. &

SULLIVAN W. 2007: The concentration of Nuf, a Rab11 effector,

at the microtubule-organizing center is cell cycle regulated, dynein-dependent, and coincides with furrow formation. — Mol.

Biol. Cell 18: 3313–3322.

SAUMAN I. & REPPERT S.M. 1996: Molecular characterization of

prothoracicotropic hormone (PTTH) from the giant silkmoth

Antheraea pernyi: developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. — Dev. Biol. 178: 418–429.

SCHOOFS L., DE LOOF A. & VAN HIEL M.B. 2017: Neuropeptides

as regulators of behavior in insects. — Annu. Rev. Entomol.

62: 35–52.

SEHADOVÁ H., MARKOVA E.P, SEHNAL F. & TAKEDA M. 2004: Distribution of circadian clock-related proteins in the cephalic

nervous system of the silkworm, Bombyx mori. — J. Biol.

Rhythms 19: 466–482.

SIMON G.C. & PREKERIS R. 2008: Mechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis. — Biochem. Soc. Trans. 36: 391–394.

SIMPSON J.C., GRIFFITHS G., WESSLING-RESNICK M., FRANSEN J.A.,

BENNETT H. & JONES A.T. 2004: A role for the small GTPase

Rab21 in the early endocytic pathway. — J. Cell Sci. 117:

6297–6311.

STENMARK H. 2009: Rab GTPases as coordinators of vesicle traffic. — Nat. Rev. Mol. Cell Biol. 10: 513–525.

doi: 10.14411/eje.2023.012

ULLRICH O., REINSCH S., URBE S., ZERIAL M. & PARTON R.G. 1996:

Rab11 regulates recycling through the pericentriolar recycling

endosome. — J. Cell Biol. 135: 913–924.

UNO T., HATA K., HIRAGAKI S., ISOYAMA Y., TRANGLE T.D., UNO

Y., KANAMARU K., YAMAGATA H., NAKAMURA M. & TAKAGI M.

2010: Small GTPases of the Rab family in the brain of Bombyx

mori. — Histochem. Cell Biol. 134: 615–622.

UNO T., SAKAMOTO K., ISOYAMA Y., HIRAGAKI S., UNO Y., KANAMARU K., YAMAGATA H., TAKAGI M., MIZOGUCHI A. & TAKEDA

M. 2013: Relationship between the expression of Rab family

GTPases and neuropeptide hormones in the brain of Bombyx

mori. — Histochem. Cell Biol. 139: 299–308.

UNO T., ISOYAMA Y., SAKAMOTO K., UNO Y., SAKAMOTO K., KANAMARU K., YAMAGATA H., TAKAGI M., MIZOGUCHI A. & TAKEDA

M. 2014: Characterization of Rab-interacting lysosomal protein in the brain of Bombyx mori. — Histochem. Cell Biol. 141:

311–320.

UNO T., FURUTANI M., WATANABE C., SAKAMOTO K., UNO Y., KANAMARU K., YAMAGATA H., MIZOGUCHI A. & TAKEDA M. 2016: Rab

proteins in the brain and corpus allatum of Bombyx mori. —

Histochem. Cell Biol. 146: 59–69.

UNO T., FURUTANI M., SAKAMOTO K., UNO Y., KANAMARU K., MIZOGUCHI A., HIRAGAKI S. & TAKEDA M. 2017: Localization and

functional analysis of the insect-specific RabX4 in the brain of

Bombyx mori. — Arch. Insect Biochem. Physiol. 96: e21404,

13 pp.

UNO T., OZAKIYA Y., FURUTANI M., SAKAMOTO K., UNO Y., KAJIWARA H., KANAMARU K. & MIZOGUCHI A. 2019: Functional characterization of insect-specific RabX6 of Bombyx mori. — Histochem. Cell Biol. 151: 187–198.

UNO T., OZAKIYA Y., SASAO M., SAKAMOTO K., YAMAUCHI Y., UNO

Y., KANAMARU K. & MIZOGUCHI A. 2021: Relationship between

Rab and insulin-like proteins in the nervous system of Bombyx

mori. — Eur. J. Entomol. 118: 307–314.

UYTTERHOEVEN V., KUENEN S., KASPROWICZ J., MISKIEWICZ K. &

VERSTREKEN P. 2011: Loss of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. —

Cell 145: 117–132.

VAFOPOULOU X. & STEEL C.G. 2014: Synergistic induction of the

clock protein PERIOD by insulin-like peptide and prothoracicotropic hormone in Rhodnius prolixus (Hemiptera): implications for convergence of hormone signaling pathways. —

Front. Physiol. 5: 41, 12 pp.

VAFOPOULOU X., STEEL C.G. & TERRY K.L. 2007: Neuroanatomical relations of prothoracicotropic hormone neurons with the

circadian timekeeping system in the brain of larval and adult

Rhodnius prolixus (Hemiptera). — J. Comp. Neurol. 503:

511–524.

VILLALOBOS-SAMBUCARO M.J., LORENZO-FIGUEIRAS A.N., RICCILLO

F.L., DIAMBRA L.A., NORIEGA F.G. & RONDEROS J.R. 2015: Allatotropin modulates myostimulatory and cardioacceleratory

activities in Rhodnius prolixus (Stal). — PLoS ONE 10(4):

e0124131, 14 pp.

WANG T., MING Z., XIAOCHUN W. & HONG W. 2011: Rab7: role of

its protein interaction cascades in endo-lysosomal traffic. —

Cell Signal 23: 516–521.

WANG Q., MOHAMED A.A. & TAKEDA M. 2013: Serotonin receptor

B may lock the gate of PTTH release/synthesis in the Chinese

silk moth, Antheraea pernyi; a diapause initiation/maintenance

mechanism? — PLoS ONE 8(11): e79381, 13 pp.

WISE S., DAVIS N.T., TYNDALE E., NOVERAL J., FOLWELL M.G.,

BEDIAN V., EMERY I.F. & SIWICKI K.K. 2002: Neuroanatomical

studies of period gene expression in the hawkmoth, Manduca

sexta. — J. Comp. Neurol. 447: 366–380.

103

Matsui et al., Eur. J. Entomol. 120: 93–104, 2023

XU G., TENG Z.W., GU G.X., QI Y.X., GUO L., XIAO S., WANG F.,

FANG Q., WANG F., SONG Q.S. ET AL. 2020: Genome-wide characterization and transcriptomic analyses of neuropeptides and

their receptors in an endoparasitoid wasp, Pteromalus puparum. — Arch. Insect Biochem. Physiol. 103(2): e21625, 23 pp.

YE T., TANG W. & ZHANG X. 2012: Involvement of Rab6 in the

regulation of phagocytosis against virus infection in invertebrates. — J. Proteome Res. 11: 4834–4846.

104

doi: 10.14411/eje.2023.012

ZENG H., QIN Y., DU E., WEI Q., LI Y., HUANG D., WANG G., VEENSTRA J.A., LI S. & LI N. 2021: Genomics- and peptidomicsbased discovery of conserved and novel neuropeptides in the

American cockroach. — J. Proteome Res. 20: 1217–1228.

Received November 23, 2022; revised and accepted March 14, 2023

Published online March 29, 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る