リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of the Conditions that Determine the Formation of Coronal Mass Ejections Using Models of the Coronal Magnetic Field」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of the Conditions that Determine the Formation of Coronal Mass Ejections Using Models of the Coronal Magnetic Field

林, 沛萱 名古屋大学

2021.06.23

概要

Solar flares and Coronal Mass Ejections (CME) are two important solar eruptions that release the magnetic energy stored in the Active Regions (ARs) of the Sun through the magnetic reconnections and MHD instabilities. Notwithstanding these two phenomena are two different manifestations for an identical energy release, observations have shown that solar flares and CMEs do not have a one-to-one relationship. To date, it is still unclear what determines the capability of an AR to specifically produce eruptive flares and CMEs, and this hinders our knowledge of the initiation mechanism for the eruptive phenomena. In this paper, we performed the statistical analysis based on linear Discriminant function Analysis (DA) to answer the question of what determines the capability of an AR to specifically produce eruptive flares and CMEs. Based on data obtained by the Solar Dynamics Observatory/ Helioseismic and Magnetic Imager, the coronal magnetic field for 51 flares larger than M5.0 class, from 29 distinct ARs, is constructed using a nonlinear force-free field extrapolation model. We analyzed the relative strength of Magnetic Flux Ropes (MFRs) to the magnetic field in the immediate vicinity, which is key to determining the CME-eruptivity.

In the first part of this paper, we propose a new parameter 𝑟𝑚 to measure the possibility that a flare can be eruptive and produce a CME. The parameter 𝑟𝑚 is defined by the ratio of the magnetic flux of twist higher than a threshold 𝑇𝑐 to the surrounding and specifically the overlying magnetic flux. We find that the footpoints of field lines with twist larger than 0.2 can well represent the subsequent flare ribbons by comparing the flare-ribbon-associated magnetic flux. The results revealed by linear DA suggest that 𝑟𝑚 is moderately well able to distinguish ARs that have the capability of producing eruptive events. Moreover, field lines overlying and “fencing in” the highly twisted region will work to confine the eruption, generating confined flares.

Second, to understand why 𝑟𝑚 failed to correctly determine the CME-eruptivities of three flares originating from AR 12192, two new schemes, the 𝑟-scheme, and 𝑞-scheme, are proposed to analyze the eruptive and confined nature of solar flares. The magnetic flux of high twist in 𝑟𝑚 is updated by the magnetic twist flux and the reconnected flux, which anchors in the flare ribbons respectively in the rand q-schemes. The linear DA results show that despite both schemes providing moderately successful classifications, the CME-eruptivity classification for the three target events can only be improved with the 𝑞-scheme. We find that the highly twisted field lines and the flare-ribbon field lines have equal average force-free constant 𝛼, but the averaged length of the flare-ribbon-related fieldlines are shorter than highly twisted field lines. The findings lead us to conclude that it is challenging to distinguish the magnetic flux forming MFR.

Our results demonstrate the importance of considering the field lines’ topology and identifying core MFRs when analyzing the eruptivity. We conclude that even though both the 𝑟- and 𝑞-schemes can be applied to most of the solar eruptions, more than one mechanism may govern CME production such that they are only moderately able to classify the eruptions.

この論文で使われている画像

参考文献

Alexander, D., Liu, R., & Gilbert, H. R. (2006). Hard X-ray production in a failed filament eruption. Astrophysical Journal, 653 (1), 719.

Alissandrakis, C. (1981). On the computation of constant alpha force-free magnetic field. Astronomy and Astrophysics, 100 , 197–200.

Altschuler, M. D., & Newkirk, G. (1969). Magnetic fields and the structure of the solar corona. Solar Physics, 9 (1), 131–149.

Amari, T., Aly, J.-J., Mikic, Z., & Linker, J. (2010). Coronal mass ejection initiation: on the nature of the flux cancellation model. The Astrophysical Journal Letters, 717 (1), L26.

Andersen, H., Larsen, S., Spliid, H., & Christensen, N. D. (1999). Multivariate statistical analysis of organ weights in toxicity studies. Toxicology, 136 (2-3), 67–77.

Andrews, M. (2003). A search for CMEs associated with big flares. Solar Physics, 218 (1/2), 261–279.

Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. (1999). A model for solar coronal mass ejections. Astrophysical Journal, 510 (1), 485–493.

Antonucci, E., & Dennis, B. (1983). Observation of chromospheric evaporation during the solar maximum mission. In Recent Advances in the Understanding of Solar Flares, (pp. 67–77).Springer.

Archontis, V., & T¨or¨ok, T. (2008). Eruption of magnetic flux ropes during flux emergence. Astronomy & Astrophysics, 492 (2), L35–L38.

Aulanier, G., DeLuca, E., Antiochos, S., McMullen, R., & Golub, L. (2000). The topology and evolution of the bastille day flare. The Astrophysical Journal, 540 (2), 1126.

Aulanier, G., D´emoulin, P., van Driel-Gesztelyi, L., Mein, P., & Deforest, C. (1998). 3-D magnetic configurations supporting prominences. II. The lateral feet as a perturbation of a twisted fluxtube. Astronomy and Astrophysics, 335 , 309–322.

Bamba, Y., Lee, K.-S., Imada, S., & Kusano, K. (2017). Study on precursor activity of the X1.6 flare in the great AR 12192 with SDO, IRIS, and Hinode. Astrophysical Journal, 840 (2), 116.

Bateman, G., & Grimm, R. C. (1979). MHD instabilities. Physics Today, 32 (10), 61–62.

Baumgartner, C., Thalmann, J. K., & Veronig, A. M. (2018). On the factors determining the eruptive character of solar flares. Astrophysical Journal, 853 , 105.

Berger, M. A., & Prior, C. (2006). The writhe of open and closed curves. Journal of Physics A: Mathematical and General, 39 (26), 8321–8348.

Bloomfield, D. S., Higgins, P. A., McAteer, R. J., & Gallagher, P. T. (2012). Toward reliable benchmarking of solar flare forecasting methods. The Astrophysical Journal Letters, 747 (2), L41.

Borrero, J., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., & Bogart, R. (2011). VFISV: very fast inversion of the stokes vector for the helioseismic and magnetic imager. Solar Physics, 273 (1), 267–293.

Burlaga, L., Sittler, E., Mariani, F., & Schwenn, a. R. (1981). Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. Journal of Geophysical Research: Space Physics, 86 (A8), 6673–6684.

Carmichael, H. (1964). 54 a process for flares. In AAS NASA Symposium on the Physics of Solar Flares: Proceedings of a Symposium Held at the Goddard Space Flight Center, Greenbelt, Maryland, October 28-30, 1963 , vol. 50, (p. 451). National Aeronautics and Space Administration.

Carrington, R. C. (1859). Description of a singular appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20 , 13–15.

Chen, H., Zhang, J., Cheng, X., Ma, S., Yang, S., & Li, T. (2014). Direct observations of tethercutting reconnection during a major solar event from 2014 February 24 to 25. The Astrophysical Journal Letters, 797 (2), L15.

Chen, H., Zhang, J., Ma, S., Yang, S., Li, L., Huang, X., & Xiao, J. (2015). Confined flares in solar active region 12192 from 2014 October 18 to 29. The Astrophysical Journal Letters, 808 (1), L24.

Chen, J., Howard, R., Brueckner, G., Santoro, R., Krall, J., Paswaters, S., Cyr, O. S., Schwenn, R., Lamy, P., & Simnett, G. (1997). Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13. The Astrophysical Journal Letters, 490 (2), L191.

Chen, P. (2011). Coronal mass ejections: models and their observational basis. Living Reviews in Solar Physics, 8 (1), 1.

Cheng, X., Guo, Y., & Ding, M. (2017). Origin and structures of solar eruptions I: magnetic flux rope. Science China Earth Sciences, 60 (8), 1383–1407.

Cheng, X., Zhang, J., Ding, M., Guo, Y., & Su, J. (2011). A comparative study of confined and eruptive flares in NOAA AR 10720. The Astrophysical Journal, 732 (2), 87.

Cheng, X., Zhang, J., Ding, M. D., & Poomvises, W. (2010). A statistical study of the postimpulsive-phase acceleration of flare-associated coronal mass ejections. Astrophysical Journal, 712 (1), 752–760.

Chintzoglou, G., Vourlidas, A., Savcheva, A., Tassev, S., Beltran, S. T., & Stenborg, G. (2017). Magnetic flux rope shredding by a hyperbolic flux tube: The detrimental effects of magnetic topology on solar eruptions. Astrophysical Journal, 843 (2), 93.

Chiu, Y., & Hilton, H. (1977). Exact green’s function method of solar force-free magnetic-field computations with constant alpha. I-theory and basic test cases. The Astrophysical Journal, 212 , 873–885.

Cremades, H., & Bothmer, V. (2004). On the three-dimensional configuration of coronal mass ejections. Astronomy & Astrophysics, 422 (1), 307–322.

Cui, Y., Wang, H., Xu, Y., & Liu, S. (2018). Statistical study of magnetic topology for eruptive and confined solar flares. Journal of Geophysical Research: Space Physics.

Dedner, A., Kemm, F., Kr¨oner, D., Munz, C.-D., Schnitzer, T., & Wesenberg, M. (2002). Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175 (2), 645–673.

D´emoulin, P., & Aulanier, G. (2010). Criteria for flux rope eruption: non-equilibrium versus torus instability. Astrophysical Journal, 718 (2), 1388–1399.

Dere, K., Brueckner, G., Howard, R., Michels, D., & Delaboudiniere, J. (1999). LASCO and EIT observations of helical structure in coronal mass ejections. Astrophysical Journal, 516 (1), 465.

DeRosa, M., Wheatland, M., Leka, K., Barnes, G., Amari, T., Canou, A., Gilchrist, S., Thalmann, J., Valori, G., Wiegelmann, T., et al. (2015). The influence of spatial resolution on nonlinear force-free modeling. The Astrophysical Journal, 811 (2), 107.

DeRosa, M. L., & Barnes, G. (2018). Does nearby open flux affect the eruptivity of solar active regions? Astrophysical Journal, 861 (2), 131.

DeRosa, M. L., Schrijver, C. J., Barnes, G., Leka, K., Lites, B. W., Aschwanden, M. J., Amari, T., Canou, A., McTiernan, J. M., R´egnier, S., et al. (2009). A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10953. The Astrophysical Journal, 696 (2), 1780.

Doyle, L., Wyper, P. F., Scullion, E., McLaughlin, J. A., Ramsay, G., & Doyle, J. G. (2019). Observations and 3D magnetohydrodynamic modeling of a confined helical jet launched by a filament eruption. The Astrophysical Journal, 887 (2), 246.

Duan, A., Jiang, C., He, W., Feng, X., Zou, P., & Cui, J. (2019). A study of pre-flare solar coronal magnetic fields: Magnetic flux ropes. Astrophysical Journal, 884 (1), 73.

Falconer, D., Moore, R., & Gary, G. (2002). Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: Baseline results. The Astrophysical Journal, 569 (2), 1016.

Fan, Y., & Gibson, S. (2006). On the nature of the X-ray bright core in a stable filament channel. The Astrophysical Journal Letters, 641 (2), L149.

Fan, Y., & Gibson, S. E. (2007). Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophysical Journal, 668 (2), 1232–1245.

Filippov, B. (2020). Failed prominence eruptions near 24 cycle maximum. Monthly Notices of the Royal Astronomical Society, 494 (2), 2166–2177.

Filippov, B., Martsenyuk, O., Srivastava, A. K., & Uddin, W. (2015). Solar magnetic flux ropes. Journal of Astrophysics and Astronomy, 36 (1), 157–184.

Forbes, T. (2000). A review on the genesis of coronal mass ejections. Journal of Geophysical Research: Space Physics, 105 (A10), 23153–23165.

Gary, G. A. (2001). Plasma beta above a solar active region: Rethinking the paradigm. Solar Physics, 203 (1), 71–86.

Gibson, S., & Fan, Y. (2006). The partial expulsion of a magnetic flux rope. The Astrophysical Journal Letters, 637 (1), L65.

Gibson, S., Fan, Y., T¨or¨ok, T., & Kliem, B. (2006). The evolving sigmoid: evidence for magnetic flux ropes in the corona before, during, and after CMEs. Space science reviews, 124 (1-4), 131–144.

Gopalswamy, N., & Kundu, M. (1992). Estimation of the mass of a coronal mass ejection from radio observations. The Astrophysical Journal, 390 , L37–L39.

Gopalswamy, N., Lara, A., Yashiro, S., Nunes, S., & Howard, R. A. (2003). Coronal mass ejection activity during solar cycle 23. In Solar Variability as an Input to the Earth’s Environment, vol. 535, (pp. 403–414).

Gosling, J. T. (1990). Coronal mass ejections and magnetic flux ropes in interplanetary space. Physics of magnetic flux ropes, 58 , 343–364.

Green, L. M., & Kliem, B. (2009). Flux rope formation preceding coronal mass ejection onset. The Astrophysical Journal Letters, 700 (2), L83.

Green, L. M., Kliem, B., & Wallace, A. (2011). Photospheric flux cancellation and associated flux rope formation and eruption. Astronomy & Astrophysics, 526 , A2.

Guo, Y., Ding, M., Schmieder, B., Li, H., T¨or¨ok, T., & Wiegelmann, T. (2010). Driving mechanism and onset condition of a confined eruption. The Astrophysical Journal Letters, 725 (1), L38.

Hanssen, A., & Kuipers, W. (1965). On the Relationship Between the Frequency of Rain and Various Meteorological Parameters.(With Reference to the Problem of Objective Forecasting).. Koninklijk Nederlands Meteorologisch Instituut.

Harra, L. K., Schrijver, C. J., Janvier, M., Toriumi, S., Hudson, H., Matthews, S., Woods, M. M., Hara, H., Guedel, M., Kowalski, A., Osten, R., Kusano, K., & Lueftinger, T. (2016). The characteristics of solar X-class flares and CMEs: a paradigm for stellar superflares and eruptions? Solar Physics, 291 (6), 1761–1782.

Harrison, R. (1995). The nature of solar flares associated with coronal mass ejection. Astronomy I& Astrophysics, 304 , 585.

Harrison, R. (2003). SOHO observations relating to the association between flares and coronal mass ejections. Advances in Space Research, 32 (12), 2425–2437.

Hesse, M., & Cassak, P. (2020). Magnetic reconnection in the space sciences: past, present, and future. Journal of Geophysical Research: Space Physics, 125 (2), e2018JA025935.

Hiei, E., Hundhausen, A., & Sime, D. (1993). Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection. Geophysical research letters, 20 (24), 2785–2788.

Hills, M. (1966). Allocation rules and their error rates. Journal of the Royal Statistical Society: Series B (Methodological), 28 (1), 1–20.

Hirayama, T. (1974). Theoretical model of flares and prominences. Solar Physics, 34 (2), 323–338.

Hodgson, R. (1859). On a curious appearance seen in the Sun. Monthly Notices of the Royal Astronomical Society, 20 , 15–16.

Hood, A. W., & Priest, E. R. (1979). Kink instability of solar coronal loops as the cause of solar flares. Solar Physics, 64 (2), 303–321.

House, L., Wagner, W., Hildner, E., Sawyer, C., & Schmidt, H. (1981). Studies of the corona with the solar maximum mission coronagraph/polarimeter. The Astrophysical Journal, 244 , L117– L121.

Hoyng, P., Duijveman, A., Machado, M. E., Rust, D. M., Svestka, Z., Boelee, A., de Jager, C., Frost, K. T., Lafleur, H., Simnett, G. M., van Beek, H. F., & Woodgate, B. E. (1981). Origin and location of the hard X-Ray emission in a two-ribbon flare. The Astrophysical Journal, 246 , L155.

Hudson, H., Acton, L., & Freeland, S. (1996). A long-duration solar flare with mass ejection and global consequences. The Astrophysical Journal, 470 , 629.

Hudson, H., Kosugi, T., Nitta, N., & Shimojo, M. (2001). Hard X-radiation from a fast coronal ejection. The Astrophysical Journal Letters, 561 (2), L211.

Illing, R., & Hundhausen, A. (1985). Observation of a coronal transient from 1.2 to 6 solar radii. Journal of Geophysical Research: Space Physics, 90 (A1), 275–282.

Inoue, S., Hayashi, K., & Kusano, K. (2016). Structure and stability of magnetic fields in solar active region 12192 based on nonlinear force-free field modeling. Astrophysical Journal, 818 (2), 168.

Inoue, S., Hayashi, K., Magara, T., Choe, G. S., & Park, Y. D. (2014a). Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. I. comparison with the observations. Astrophysical Journal, 788 (2), 182.

Inoue, S., Hayashi, K., Magara, T., Choe, G. S., & Park, Y. D. (2015). Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. II. dynamics connecting the solar flare and the coronal mass ejection. Astrophysical Journal, 803 (2), 73.

Inoue, S., Hayashi, K., Shiota, D., Magara, T., & Choe, G. S. (2013). Magnetic structure producing X- and M-class solar flares in solar active region 11158. Astrophysical Journal, 770 (1), 79.

Inoue, S., Kusano, K., Magara, T., Shiota, D., & Yamamoto, T. T. (2011). Twist and connectivity of magnetic field lines in the solar active region NOAA 10930. Astrophysical Journal, 738 (2), 161.

Inoue, S., Magara, T., Pandey, V., Shiota, D., Kusano, K., Choe, G., & Kim, K. (2014b). Nonlinear force-free extrapolation of the coronal magnetic field based on the magnetohydrodynamic relaxation method. The Astrophysical Journal, 780 (1), 101.

Ishiguro, N., & Kusano, K. (2017). Double arc instability in the solar corona. Astrophysical Journal, 843 (2), 101.

Jackson, B. (1985). Imaging of coronal mass ejections by the helios spacecraft. Solar physics, 100 (1-2), 563–574.

Ji, H., Wang, H., Schmahl, E. J., Moon, Y.-J., & Jiang, Y. (2003). Observations of the failed eruption of a filament. The Astrophysical Journal Letters, 595 (2), L135.

Jiang, C., & Feng, X. (2012). A new implementation of the magnetohydrodynamics-relaxation method for nonlinear force-free field extrapolation in the solar corona. The Astrophysical Journal, 749 (2), 135.

Jiang, C., Wu, S. T., Yurchyshyn, V., Wang, H., Feng, X., & Hu, Q. (2016). How did a major confined flare occur in super solar active region 12192? Astrophysical Journal, 828 (1), 62.

Jing, J., Liu, C., Lee, J., Ji, H., Liu, N., Xu, Y., & Wang, H. (2018). Statistical analysis of torus and kink instabilities in solar eruptions. Astrophysical Journal, 864 (2), 138.

Jing, J., Tan, C., Yuan, Y., Wang, B., Wiegelmann, T., Xu, Y., & Wang, H. (2010). Free magnetic energy and flare productivity of active regions. The Astrophysical Journal, 713 (1), 440–449.

Jing, J., Xu, Y., Lee, J., Nitta, N. V., Liu, C., Park, S.-H., Wiegelmann, T., & Wang, H. (2015). Comparison between the eruptive X2.2 flare on 2011 February 15 and confined X3.1 flare on 2014 October 24. Research in Astronomy and Astrophysics, 15 (9), 1537–1546.

Jing, J., Yurchyshyn, V. B., Yang, G., Xu, Y., & Wang, H. (2004). On the relation between filament eruptions, flares, and coronal mass ejections. The Astrophysical Journal, 614 (2), 1054.

Kahler, S. W. (1992). Solar flares and coronal mass ejections. Annual Review of Astronomy and Astrophysics, 30 (1), 113–141.

Kahler, S. W., N. R., J. S., & Liggett, M. (1989). Coronal mass ejections and associated X-ray flare durations. Astrophysical Journal, 344 , 1026.

Kang, J., Inoue, S., Kusano, K., Park, S.-H., & Moon, Y.-J. (2019). Onset mechanism of M6.5 solar flare observed in active region 12371. The Astrophysical Journal, 887 (2), 263.

Kang, J., Magara, T., Inoue, S., Kubo, Y., & Nishizuka, N. (2016). Distribution characteristics of coronal electric current density as an indicator for the occurrence of a solar flare. Publications of the Astronomical Society of Japan, 68 (6), 101.

Kazachenko, M. D., Lynch, B. J., Welsch, B. T., & Sun, X. (2017). A database of flare ribbon properties from the Solar Dynamics Observatory. I. Reconnection flux. The Astrophysical Journal, 845 (1), 49.

Kendall, M., Stuart, A., & Ord, J. K. (1983). Classification: discrimination and clustering. The advanced theory of statistics, 3 , 370–421.

Kliem, B., Lin, J., Forbes, T., Priest, E., & T¨or¨ok, T. (2014). Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope. The Astrophysical Journal, 789 (1), 46.

Kliem, B., Titov, V., & T¨or¨ok, T. (2004). Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astronomy & Astrophysics, 413 (3), L23–L26.

Kliem, B., & T¨or¨ok, T. (2006). Torus instability. Physical Review Letters, 96 (25).

Kopp, R., & Pneuman, G. (1976). Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics, 50 (1), 85–98.

Krall, K., Smith, J., Hagyard, M., West, E., & Cummings, N. (1982). Vector magnetic field evolution, energy storage, and associated photospheric velocity shear within a flare-productive active region. Solar Physics, 79 (1), 59–75.

Kuperus, M., & Raadu, M. (1974). The support of prominences formed in neutral sheets. Astronomy and Astrophysics, 31 , 189.

Kuridze, D., Mathioudakis, M., Kowalski, A., Keys, P., Jess, D., Balasubramaniam, K., & Keenan, F. (2013). Failed filament eruption inside a coronal mass ejection in active region 11121. Astronomy & Astrophysics, 552 , A55.

Kusano, K., Iju, T., Bamba, Y., & Inoue, S. (2020). A physics-based method that can predict imminent large solar flares. Science, 369 (6503), 587–591.

Kushwaha, U., Joshi, B., Veronig, A. M., & Moon, Y.-J. (2015). Large-scale contraction and subsequent disruption of coronal loops during various phases of the M6. 2 flare associated with the confined flux rope eruption. Astrophysical Journal, 807 (1), 101.

Leamon, R. J., Canfield, R. C., Blehm, Z., & Pevtsov, A. A. (2003). What is the role of the kink instability in solar coronal eruptions? The Astrophysical Journal, 596 (2), L255–L258.

Leka, K., & Barnes, G. (2007). Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophysical Journal, 656 (2), 1173.

Leka, K., Barnes, G., Crouch, A., Metcalf, T. R., Gary, G. A., Jing, J., & Liu, Y. (2009). Resolving the 180 ambiguity in solar vector magnetic field data: Evaluating the effects of noise, spatial resolution, and method assumptions. Solar Physics, 260 (1), 83–108.

Leka, K., Fan, Y., & Barnes, G. (2005). On the availability of sufficient twist in solar active regions to trigger the kink instability. Astrophysical Journal, 626 (2), 1091.

Leka, K., & Skumanich, A. (1999). On the value of ‘αar’ from vector magnetograph data. Solar Physics, 188 (1), 3–19.

Leka, K. D., & Barnes, G. (2003). Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. discriminant analysis. Astrophysical Journal, 595 (2), 1296–1306.

Lemen, J. R., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., Duncan, D. W., Edwards, C. G., Friedlaender, F. M., Heyman, G. F., Hurlburt, N. E., et al. (2011). The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). In The solar dynamics observatory, (pp. 17–40). Springer.

Lepping, R., Jones, J., & Burlaga, L. (1990). Magnetic field structure of interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research: Space Physics, 95 (A8), 11957–11965.

Lin, J., & Forbes, T. (2000). Effects of reconnection on the coronal mass ejection process. Journal of Geophysical Research: Space Physics, 105 (A2), 2375–2392.

Liu, C., Deng, N., Lee, J., Wiegelmann, T., Moore, R. L., & Wang, H. (2013). Evidence for solar tether-cutting magnetic reconnection from coronal field extrapolations. The Astrophysical Journal Letters, 778 (2), L36.

Liu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., Liu, C., Xu, Y., & Wiegelmann, T. (2016). Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophysical Journal, 818 (2), 148.

Liu, Y. (2008). Magnetic field overlying solar eruption regions and kink and torus instabilities. Astrophysical Journal, 679 (2), L151–L154.

Liu, Y., Hoeksema, J. T., Sun, X., & Hayashi, K. (2017). Vector magnetic field synoptic charts from the Helioseismic and Magnetic Imager (HMI). Solar Physics, 292 (2), 29.

Liu, Y., Su, J., Xu, Z., Lin, H., Shibata, K., & Kurokawa, H. (2009). New observation of failed filament eruptions: The influence of asymmetric coronal background fields on solar eruptions. The Astrophysical Journal Letters, 696 (1), L70.

Longcope, D., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., & Dasso, S. (2007). Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Physics, 244 (1-2), 45–73.

Low, B., & Hundhausen, J. (1995). Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. The Astrophysical Journal, 443 , 818–836.

Machado, M. E., Moore, R. L., Hernandez, A. M., Rovira, M. G., Hagyard, M. J., & Smith Jr, J. B. (1988). The observed characteristics of flare energy release. I-Magnetic structure at the energy release site. The Astrophysical Journal, 326 , 425–450.

MacQueen, R., Eddy, J., Gosling, J., Hildner, E., Munro, R., Newkirk Jr, G., Poland, A., & Ross, C. (1974). The outer solar corona as observed from Skylab: Preliminary results. The Astrophysical Journal, 187 , L85.

MacTaggart, D., & Hood, A. W. (2009). Multiple eruptions from magnetic flux emergence. Astronomy & Astrophysics, 508 (1), 445–449.

Mariˇci´c, D., Vrˇsnak, B., Stanger, A. L., Veronig, A. M., Temmer, M., & Roˇsa, D. (2007). Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Solar Physics, 241 (1), 99–112.

Mariska, J. T., Sakao, T., & Bentley, R. (1996). Hard and soft X-ray observations of solar limb flares. The Astrophysical Journal, 459 , 815.

Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. (1994). A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature, 371 (6497), 495–497.

McClymont, A., & Mikic, Z. (1994). Thickness variations along coronal loops inferred from vector magnetograph data. The Astrophysical Journal, 422 , 899–905.

Metcalf, T. R. (1994). Resolving the 180-degree ambiguity in vector magnetic field measurements: The ‘minimum’ energy solution. Solar Physics, 155 (2), 235–242.

Metcalf, T. R., DeRosa, M. L., Schrijver, C. J., Barnes, G., van Ballegooijen, A. A., Wiegelmann, T., Wheatland, M. S., Valori, G., & McTtiernan, J. M. (2008). Nonlinear force-free modeling of coronal magnetic fields. II. modeling a filament arcade and simulated chromospheric and photospheric vector fields. Solar Physics, 247 (2), 269–299.

Metcalf, T. R., Jiao, L., McClymont, A. N., Canfield, R. C., & Uitenbroek, H. (1995). Is the solar chromospheric magnetic field force-free? The Astrophysical Journal, 439 , 474–481.

Mikic, Z., Barnes, D., & Schnack, D. (1988). Dynamical evolution of a solar coronal magnetic field arcade. The Astrophysical Journal, 328 , 830–847.

Milligan, R. O., Gallagher, P. T., Mathioudakis, M., & Keenan, F. P. (2006). Observational evidence of gentle chromospheric evaporation during the impulsive phase of a solar flare. The Astrophysical Journal Letters, 642 (2), L169.

Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. (2001). Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophysical Journal, 552 (2), 833–848.

Muhamad, J., Kusano, K., Inoue, S., & Bamba, Y. (2018). A study of magnetic field characteristics of the flaring active region based on nonlinear force-free field extrapolation. Astrophysical Journal, 863 (2), 162.

Munro, R., Gosling, J., Hildner, E., MacQueen, R., Poland, A., & Ross, C. (1979). The association of coronal mass ejection transients with other forms of solar activity. Solar Physics, 61 (1), 201–215.

Myers, C. E., Yamada, M., Ji, H., Yoo, J., Fox, W., Jara-Almonte, J., Savcheva, A., & DeLuca, E. E. (2015). A dynamic magnetic tension force as the cause of failed solar eruptions. Nature, 528 (7583), 526–529.

M¨ostl, C., Rollett, T., Frahm, R. A., Liu, Y. D., Long, D. M., Colaninno, R. C., Reiss, M. A., Temmer, M., Farrugia, C. J., Posner, A., Dumbovi´c, M., Janvier, M., D´emoulin, P., Boakes, P., Devos, A., Kraaikamp, E., Mays, M. L., & Vrˇsnak, B. (2015). Strong coronal channelling and interplanetary evolution of a solar storm up to earth and mars. Nature Communications, 6 (1).

Nakagawa, Y. (1974). Dynamics of the solar magnetic field. I. method of examination of force-free magnetic fields. The Astrophysical Journal, 190 , 437–440.

Nindos, A., Patsourakos, S., & Wiegelmann, T. (2012). On the role of the background overlying magnetic field in solar eruptions. Astrophysical Journal, 748 (1), L6.

Pagano, P., Mackay, D. H., & Yardley, S. L. (2019). A prospective new diagnostic technique for distinguishing eruptive and noneruptive active regions. Astrophysical Journal, 883 (2), 112.

Panesar, N. K., Sterling, A. C., & Moore, R. L. (2016). Homologous jet-driven coronal mass ejections from solar active region 12192. Astrophysical Journal, 822 (2), L23.

Priest, E., & Forbes, T. (2002). The magnetic nature of solar flares. Astronomy & Astrophysics Reviews, 10 (4), 313–377.

Priest, E., Hood, A., & Anzer, U. (1989). A twisted flux-tube model for solar prominences. I-General properties. The Astrophysical Journal, 344 , 1010–1025.

Qiu, J. (2009). Observational analysis of magnetic reconnection sequence. Astrophysical Journal, 692 (2), 1110.

Qiu, J., Liu, W., Hill, N., & Kazachenko, M. (2010). Reconnection and energetics in two-ribbon flares: a revisit of the bastille-day flare. The Astrophysical Journal, 725 (1), 319.

Qiu, J., Liu, W.-J., & Longcope, D. W. (2012). Heating of flare loops with observationally constrained heating functions. Astrophysical Journal, 752 (2), 124.

Riley, P., Lionello, R., Miki´c, Z., & Linker, J. (2008). Using global simulations to relate the threepart structure of coronal mass ejections to in situ signatures. The Astrophysical Journal, 672 (2), 1221.

Rust, D. M., & Kumar, A. (1996). Evidence for helically kinked magnetic flux ropes in solar eruptions. The Astrophysical Journal Letters, 464 (2), L199.

Saito, K., & Hyder, C. L. (1968). A concentric ellipse multiple-arch system in the solar corona. Solar Physics, 5 (1), 61–86.

Saito, K., & Tandberg-Hanssen, E. (1973). The arch systems, cavities and prominences in the helmet streamer observed at the solar eclipse, November 12, 1966. Solar Physics, 31 (1), 105–121.

Sakurai, T. (1976). Magnetohydrodynamic interpretation of the motion of prominences. Publications of the Astronomical Society of Japan, 28 , 177–198.

Sakurai, T. (1981). Calculation of force-free magnetic field with non-constant α. Solar physics, 69 (2), 343–359.

Sakurai, T. (1982). Green’s function methods for potential magnetic fields. Solar Physics, 76 (2), 301–321.

Savcheva, A. S., Green, L. M., van Ballegooijen, A. A., & DeLuca, E. E. (2012). Photospheric flux cancellation and the build-up of sigmoidal flux ropes on the sun. Astrophysical Journal, 759 (2), 105.

Schou, J., Scherrer, P. H., Bush, R. I., Wachter, R., Couvidat, S., Rabello-Soares, M. C., Bogart, R. S., Hoeksema, J., Liu, Y., Duvall, T., et al. (2012). Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Physics, 275 (1-2), 229–259.

Schrijver, C. J., DeRosa, M. L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M. S., Amari, T., Aulanier, G., D´emoulin, P., Fuhrmann, M., Kusano, K., R´egnier, S., & Thalmann, J. K. (2008). Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. The Astrophysical Journal, 675 (2), 1637–1644.

Sheeley Jr, N., Howard, R., Koomen, M., & Michels, D. (1983). Associations between coronal mass ejections and soft X-ray events. Astrophysical Journal, 272 , 349–354.

Shibata, K. (1998). Evidence of magnetic reconnection in solar flares and a unified model of flares. Astrophysics and Space Science, 264 (1-4), 129–144.

Shibata, K., & Magara, T. (2011). Solar flares: magnetohydrodynamic processes. Living Reviews in Solar Physics, 8 (1), 6.

Shibata, K. c., Masuda, S., Shimojo, M., Hara, H., Yokoyama, T., Tsuneta, S., Kosugi, T., & Ogawara, Y. (1995). Hot-plasma ejections associated with compact-loop solar flares. The Astrophysical Journal Letters, 451 (2), L83.

Shiota, D., Kusano, K., Miyoshi, T., Nishikawa, N., & Shibata, K. (2008). A quantitative mhd study of the relation among arcade shearing, flux rope formation, and eruption due to the tearing instability. Journal of Geophysical Research: Space Physics, 113 (A3).

Silva, A. V., White, S. M., Lin, R. P., De Pater, I., Gary, D. E., McTiernan, J. M., Hudson, H. S., Doyle, J. G., Hagyard, M. J., & Kundu, M. R. (1996). Comprehensive multiwavelength observations of the 1992 January 7 solar flare. The Astrophysical Journal Supplement Series, 106 , 621.

St. Cyr, O. C., & Webb, D. F. (1991). Activity associated with coronal mass ejections at solar minimum: SMM observations from 1984-1986. Solar Physics, 136 (2), 379–394.

Sturrock, P. (1966). Model of the high-energy phase of solar flares. Nature, 211 (5050), 695–697.

Sturrock, P., & Smith, S. M. (1968). Magnetic-field structure associated with coronal streamers. Solar Physics, 5 (1), 87–101.

Sturrock, P. A., Weber, M., Wheatland, M. S., & Wolfson, R. (2001). Metastable magnetic configurations and their significance for solar eruptive events. The Astrophysical Journal, 548 (1), 492.

Sun, X., Bobra, M. G., Hoeksema, J. T., Liu, Y., Li, Y., Shen, C., Couvidat, S., Norton, A. A., & Fisher, G. H. (2015). Why is the great solar active region 12192 flare-rich but CME-poor? Astrophysical Journal, 804 (2), L28.

Takasao, S., Asai, A., Isobe, H., & Shibata, K. (2011). Simultaneous observation of reconnection inflow and outflow associated with the 2010 August 18 solar flare. The Astrophysical Journal Letters, 745 (1), L6.

Tanaka, K., & Nakagawa, Y. (1973). Force-free magnetic fields and flares of august 1972. Solar physics, 33 (1), 187–204.

Tang, F. (1987). Quiescent prominences-where are they formed? Solar physics, 107 (2), 233–237.

Temmer, M., Veronig, A., Vrˇsnak, B., Ryb´ak, J., G¨om¨ory, P., Stoiser, S., & Mariˇci´c, D. (2008). Acceleration in fast halo cmes and synchronized flare HXR bursts. The Astrophysical Journal Letters, 673 (1), L95.

Teriaca, L., Falchi, A., Falciani, R., Cauzzi, G., & Maltagliati, L. (2006). Dynamics and evolution of an eruptive flare. Astronomy & Astrophysics, 455 (3), 1123–1133.

Thalmann, J., Su, Y., Temmer, M., & Veronig, A. (2015). The confined X-class flares of solar active region 2192. The Astrophysical Journal Letters, 801 (2), L23.

Thalmann, J. K., & Wiegelmann, T. (2008). Evolution of the flaring active region NOAA 10540 as a sequence of nonlinear force-free field extrapolations. Astronomy & Astrophysics, 484 (2), 495–502.

Thalmann, J. K., Wiegelmann, T., & Raouafi, N.-E. (2008). First nonlinear force-free field extrapolations of SOLIS/VSM data. Astronomy & Astrophysics, 488 (3), L71–L74.

Titov, V., & D´emoulin, P. (1999). Basic topology of twisted magnetic configurations in solar flares. Astronomy and Astrophysics, 351 , 707–720.

Titov, V., Priest, E., & Demoulin, P. (1993). Conditions for the appearance of “bald patches” at the solar surface. Astronomy and Astrophysics, 276 , 564.

Titov, V. S. (2007). Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophysical Journal, 660 (1), 863.

Titov, V. S., Hornig, G., & D´emoulin, P. (2002). Theory of magnetic connectivity in the solar corona. Journal of Geophysical Research: Space Physics, 107 (A8), SSH–3.

Toriumi, S., Schrijver, C. J., Harra, L. K., Hudson, H., & Nagashima, K. (2017). Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophysical Journal, 834 (1), 56.

T¨or¨ok, T., & Kliem, B. (2005). Confined and ejective eruptions of kink-unstable flux ropes. The Astrophysical Journal Letters, 630 (1), L97.

Tousey, R., Austin, W., Purcell, J., & Widing, K. (1973). Space research XIII, ed. Rycroft, MJ, Runcorn SK, (p. 173).

Tsuneta, S. (1996). Structure and dynamics of magnetic reconnection in a solar flare. The Astrophysical Journal, 456 , 840.

Tsuneta, S. (1997). Moving plasmoid and formation of the neutral sheet in a solar flare. The Astrophysical Journal, 483 (1), 507.

van Ballegooijen, A. A., & Martens, P. (1989). Formation and eruption of solar prominences. The Astrophysical Journal, 343 , 971–984.

van der Walt, S., Sch¨onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., & the scikit-image contributors (2014). scikit-image: image processing in Python. PeerJ , 2 , e453.

Vourlidas, A., Lynch, B. J., Howard, R. A., & Li, Y. (2013). How many CMEs have flux ropes? deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Physics, 284 (1), 179–201.

Wang, D., Liu, R., Wang, Y., Liu, K., Chen, J., Liu, J., Zhou, Z., & Zhang, M. (2017). Critical height of the torus instability in two-ribbon solar flares. Astrophysical Journal, 843 (1), L9.

Wang, R., Liu, Y. D., Dai, X., Yang, Z., Huang, C., & Hu, H. (2015). The role of active region coronal magnetic field in determining coronal mass ejection propagation direction. The Astrophysical Journal, 814 (1), 80.

Wang, Y., & Zhang, J. (2007). A comparative study between eruptive X-class flares associated with coronal mass ejections and confined X-class flares. The Astrophysical Journal, 665 (2), 1428.

Wang, Y. M. (2002). A statistical study on the geoeffectiveness of earth-directed coronal mass ejections from march 1997 to december 2000. Journal of Geophysical Research, 107 (A11).

Webb, D., & Hundhausen, A. (1987). Activity associated with the solar origin of coronal mass ejections. Solar physics, 108 (2), 383–401.

Wheatland, M., & Regnier, S. (2009). A self-consistent nonlinear force-free solution for a solar active region magnetic field. The Astrophysical Journal Letters, 700 (2), L88.

Wiegelmann, T. (2008). Nonlinear force-free modeling of the solar coronal magnetic field. Journal of Geophysical Research: Space Physics, 113 (A3).

Wiegelmann, T., & Sakurai, T. (2012). Solar force-free magnetic fields. Living Reviews in Solar Physics, 9 (1), 5.

Woods, T., Eparvier, F., Hock, R., Jones, A., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., et al. (2010). Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. In The solar dynamics observatory, (pp. 115–143). Springer.

Wu, S., Sun, M., Chang, H., Hagyard, M., & Gary, G. (1990). On the numerical computation of nonlinear force-free magnetic fields. The Astrophysical Journal, 362 , 698–708.

Wu, Y., Tang, Y., Dai, Y., & Wu, G. (2002). The solar origin of the 6 January 1997 coronal mass ejection. Solar Physics, 207 (1), 159–171.

Wyper, P., DeVore, C., & Antiochos, S. (2018). A breakout model for solar coronal jets with filaments. The Astrophysical Journal, 852 (2), 98.

Xue, Z., Yan, X., Yang, L., Wang, J., & Zhao, L. (2017). Observing formation of flux rope by tether-cutting reconnection in the sun. The Astrophysical Journal Letters, 840 (2), L23.

Yashiro, S. (2005). Visibility of coronal mass ejections as a function of flare location and intensity. Journal of Geophysical Research, 110 (A12).

Zhang, J., & Dere, K. (2006). A statistical study of main and residual accelerations of coronal mass ejections. Astrophysical Journal, 649 (2), 1100.

Zhang, J., Dere, K. P., Howard, R. A., Kundu, M. R., & White, S. M. (2001). On the temporal relationship between coronal mass ejections and flares. Astrophysical Journal, 559 (1), 452–462.

Zhou, G., Wang, J., & Cao, Z. (2003). Correlation between halo coronal mass ejections and solar surface activity. Astronomy & Astrophysics, 397 (3), 1057–1067.

参考文献をもっと見る