リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Simulation study on parametric dependence of whistler-mode hiss generation in the plasmasphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Simulation study on parametric dependence of whistler-mode hiss generation in the plasmasphere

Liu, Yin Omura, Yoshiharu Hikishima, Mitsuru 京都大学 DOI:10.1186/s40623-021-01554-6

2021

概要

We conduct electromagnetic particle simulations to examine the applicability of nonlinear wave growth theory to the generation process of plasmaspheric hiss. We firstly vary the gradient of the background magnetic field from a realistic model to a rather steep gradient model. Under such variation, the threshold amplitude in the nonlinear theory increases quickly and the overlap between threshold and optimum amplitude disappears correspondingly, the nonlinear process is suppressed. In the simulations, as we enlarge the gradient coefficient of the background magnetic field, waves generated near the equator do not grow through propagation. By examining the range of suitable values of inhomogeneity factor S (i.e., |S|<2), we find the generation of wave packets is limited to the equatorial region when the background field is steep, showing a good agreement with what is indicated by critical distance in the theory. We then check the dependence of generation of hiss emissions on different hot electron densities. Since the overlap between threshold and optimum amplitude vanishes, the nonlinear process is weakened when hot electron density becomes smaller. In the simulation results, we find similar wave structures in all density cases, yet with different magnitudes. The existence of suitable S values implies that the nonlinear process occurs even at a low level of hot electron density. However, by examining JE that closely relates to the wave growth, we find energy conveyed from particles to waves is much limited in small density cases. Therefore, the nonlinear process is suppressed when hot electron density is small, which agrees with the theoretical analysis.

この論文で使われている画像

参考文献

Bortnik J, Thorne RM, Meredith NP (2008) The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452(7183):62–66

Chen L, Thorne RM, Bortnik J, Li W, Horne RB, Reeves G, Kletzing C, Kurth W,

Hospodarsky G, Spence HE et al (2014) Generation of unusually low

frequency plasmaspheric hiss. Geophys Res Lett 41(16):5702–5709

Draganov A, Inan U, Sonwalkar V, Bell T (1992) Magnetospherically reflected

whistlers as a source of plasmaspheric hiss. Geophys Res Lett

19(3):233–236

Hartley D, Kletzing C, Chen L, Horne R, Santolik O (2019) Van allen probes

observations of chorus wave vector orientations: implications for the

chorus-to-hiss mechanism. Geophys Res Lett 46(5):2337–2346

Hikishima M, Yagitani S, Omura Y, Nagano I (2009) Full particle simulation of

whistler-mode rising chorus emissions in the magnetosphere. J Geophys

Res. https://​doi.​org/​10.​1029/​2008J​A0136​25

Hikishima M, Omura Y, Summers D (2020) Particle simulation of the generation

of plasmaspheric hiss. J Geophys Res 125(8):e2020JA027, 973

Kennel CF, Petschek H (1966) Limit on stably trapped particle fluxes. J Geophys

Res 71(1):1–28

Li W, Ma Q, Thorne R, Bortnik J, Kletzing C, Kurth W, Hospodarsky G, Nishimura

Y (2015) Statistical properties of plasmaspheric hiss derived from van

allen probes data and their effects on radiation belt electron dynamics. J

Geophys Res 120(5):3393–3405

Liu N, Su Z, Gao Z, Zheng H, Wang Y, Wang S, Miyoshi Y, Shinohara I, Kasahara

Y, Tsuchiya F et al (2020) Comprehensive observations of substormenhanced plasmaspheric hiss generation, propagation, and dissipation.

Geophys Res Lett 47(2):e2019GL086, 040

Matsumoto H, Omura Y (1985) Particle simulation of electromagnetic waves

and its application to space plasmas. Comput Simulat Space Plasmas

43:43–102

Meredith NP, Horne RB, Thorne RM, Summers D, Anderson RR (2004) Substorm

dependence of plasmaspheric hiss. J Geophys Res. https://​doi.​org/​10.​

1029/​2004J​A0103​87

Nakamura S, Omura Y, Summers D, Kletzing CA (2016) Observational evidence

of the nonlinear wave growth theory of plasmaspheric hiss. Geophys Res

Lett 43(19):10–040

Nogi T, Nakamura S, Omura Y (2020) Full particle simulation of whistler-mode

triggered falling-tone emissions in the magnetosphere. J Geophys Res

125(10):e2020JA027, 953

Omura Y (2021) Nonlinear wave growth theory of whistler-mode chorus and

hiss emissions in the magnetosphere. Earth Planets Space 73(1):1–28.

https://​doi.​org/​10.​1186/​s40623-​021-​01380-w

Omura Y, Katoh Y, Summers D (2008) Theory and simulation of the generation

of whistler-mode chorus. J Geophys Res. https://​doi.​org/​10.​1029/​2007J​

A0126​22

Omura Y, Nakamura S, Kletzing CA, Summers D, Hikishima M (2015) Nonlinear

wave growth theory of coherent hiss emissions in the plasmasphere. J

Geophys Res 120(9):7642–7657

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Liu et al. Earth, Planets and Space

(2021) 73:230

Ondoh T, Nakamura Y, Watanabe S, Aikyo K, Murakami T (1983) Plasmaspheric

hiss observed in the topside ionosphere at mid-and low-latitudes. Planet

Space Sci 31(4):411–422

Santolík O, Chum J, Parrot M, Gurnett D, Pickett J, Cornilleau-Wehrlin N (2006)

Propagation of whistler mode chorus to low altitudes: spacecraft observations of structured elf hiss. J Geophys Res. https://​doi.​org/​10.​1029/​

2005J​A0114​62

Singh D, Singh AK, Patel R, Singh R, Singh AK (1999) Two types of elf hiss

observed at varanasi, india. Annales Geophysicae 17:1260–1267

Smith E, Frandsen A, Tsurutani B, Thorne R, Chan K (1974) Plasmaspheric

hiss intensity variations during magnetic storms. J Geophys Res

79(16):2507–2510

Summers D, Omura Y, Nakamura S, Kletzing CA (2014) Fine structure of plasmaspheric hiss. J Geophys Res 119(11):9134–9149

Tobita M, Omura Y (2018) Nonlinear dynamics of resonant electrons interacting with coherent langmuir waves. Phys Plasmas 25(3):032, 105

Umeda T, Omura Y, Matsumoto H (2001) An improved masking method for

absorbing boundaries in electromagnetic particle simulations. Comput

Phys Commun 137(2):286–299

Wu Y, Tao X, Zonca F, Chen L, Wang S (2020) Controlling the chirping of

chorus waves via magnetic field inhomogeneity. Geophys Res Lett

47(10):e2020GL087791

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 17 of 17

...

参考文献をもっと見る