リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「南大西洋異常と地球低軌道衛星に対する宇宙天気の影響」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

南大西洋異常と地球低軌道衛星に対する宇宙天気の影響

キロロス, ミナ, ジョージ, ザキ, ギルギス MINA, GEORGES, ZAKI, GIRGIS, KIROLOSSE 九州大学

2020.09.25

概要

Since the beginning of the last century, humankind is continuously racing toward building, developing, and launching satellites to explore the space, starting from the near-Earth space environment to the most distant celestial objects. It is now well-understood that space is not a vacuum, but it is filled with a plasma, a high-temperature gas that conducts electricity. In particular, highly energetic plasma is trapped by the magnetic field near the Earth, forming the radiation belts (a.k.a. the Van Allen belts). Spacecraft operations in these regions could easily be subjected to harmful situations.

This thesis focuses on the energetic protons in the inner trapped radiation belt. One of the main aspects of the inner radiation belt is the South Atlantic Anomaly (SAA), a region with reduced geomagnetic field intensity. Near the SAA, the inner belt is close to the Earth's surface so that the energetic protons can precipitate inside the anomaly as they do in cavities. Thus, this region imposes an additional dangerous radiation source on the Low-Earth Orbit (LEO) spacecraft missions.

The radiation belts are not stationary, but they behave dynamically in response to variations of the space weather conditions. In this work, the numerical approach was considered by developing test particle simulation codes to compute the particle trajectories. The magnetic field models implemented are the combination of the internal (primary) magnetic field model, IGRF, and the external (disturbed) magnetic field model, the Tsyganenko model series. In addition to the magnetic field, the inductive electric field is included in the simulations by direct numerical integration of the Biot-Savart law. The obtained numerical results were compared with satellite observations

The thesis is organized as follows: In the first chapter, basic concepts on the South Atlantic Anomaly are explained, such as how it is formed and its anomaly effects. In Chapter 2, the numerical methods used are described, and the definitions of some useful parameters are introduced. The essential methods are the implementation of the magnetic field models, the electric field models, and the test particle simulation models. Chapter 3 discusses the long-term variations of the SAA's magnetic response to the solar wind dynamic pressure and the Interplanetary Magnetic Field (IMF) for 11 years. We have implemented the Tsyganenko model (T96) to study the variations of the SAA center movement, the SAA area, and the minimum magnetic field inside the SAA. Chapter 4 analyzes the medium-term changes of the SAA's magnetic response to the solar wind dynamic pressure, IMF conditions, the Dst index, and geodipole tilting angle by implementing the Tsyganenko models T96, T01 and TS05. In Chapter 5, we have calculated the proton trajectories in the realistic magnetic field to determine the proton flux inside the SAA. We have also studied the effect of the geodipole tilting angle and the geomagnetic storm effects on the proton flux response inside the anomaly and compared the numerical results with spacecraft observations. Chapter 6 extended our test particle simulation model to cover the main phases of a selected geomagnetic storm using the guiding center approximation model (Tao-Chan-Brizard model) to compute the proton trajectories in the realistic magnetic model. Comparisons are made between the runs with and without the electric field to discuss the roles of the inductive electric field. In Chapter 7, we calculated the radiation environment of the SAA on the LEO spacecraft missions. According to the proton flux obtained from the numerical simulations, we could estimate the absorbed radiation dose rates and the Single Event Upset (SEU) rates.

The main results obtained are as follows: First, the geodipole tilting angle and the Dst index are the most influencing parameters on the magnetic field variations inside the SAA, and the magnetic variations in the SAA could be driven by the magnetic poles with respect to space weather conditions. Second, we have elucidated the basic features of the proton flux anomaly using the test particle simulations. For a small geodipole tilting angle, the proton flux was increased in the SAA. The electric field effect on the inner proton belt is significant, and hence, on the proton flux response in the SAA as well. Third, it is found that the proton flux variations inside the SAA are directly influencing and proportionally changing the radiation environment of a selected LEO spacecraft mission. Thus, the proton flux increase in the SAA led to an increase in the SEU and radiation dose rates.

参考文献

[Geo, 2010] (2010). Sun-Earth System Science (Original Text in Japanese Language). Geomagnetism and Geoscience Union Meeting School Education Working Group, Kyoto University.

[A. Tarduno et al., 2015] A. Tarduno, J., K. Watkeys, M., N. Huffman, T., D. Cottrell, R., G. Blackman, E., Wendt, A., A. Scribner, C., and L. Wagner, C. (2015). Antiquity of the South Atlantic Anomaly and evidence for top-down control on the geodynamo. Nature Communications, 6:7865.

[Antonova et al., 2003] Antonova, A., Gubar’, Y., and Kropotkin, A. (2003). Effects in the radiation belts caused by the second adiabatic invariant violation in the presence of dayside off-equatorial magnetic field minima. Advances in Space Research, 31(5):1223–1228.

[Aubert, 2015] Aubert, J. (2015). Geomagnetic forecasts driven by thermal wind dynamics in the Earth’s core. Geophysical Journal International, 203:1738–1751.

[Badavi, 2011] Badavi, F. F. (2011). A low earth orbit dynamic model for the proton anisotropy validation. Nuclear Inst. and Methods in Physics Research B, 269(21):2614–2622.

[Badavi, 2014] Badavi, F. F. (2014). Validation of the new trapped environment AE9 / AP9 / SPM at low Earth orbit. Advances in Space Research, 54(6):917–928.

[Badhwar, 1997] Badhwar, G. D. (1997). Drift rate of the South Atlantic Anomaly. J. Geophys. Res., 102(A2):2343–2349.

[Barratt and Pool, 2008] Barratt, M. R. and Pool, S. L. (2008). Principles of Clinical Medicine for Space Flight. Springer.

[Barth, 1997] Barth, J. (1997). Radiation Environments. In IEEE NSREC Short Course, Session I.

[Beck and Divita, 1962] Beck, A. J. and Divita, E. L. (1962). Evaluation of Space Radiation Doses Received Within a Typical Spacecraft. American Rocket Society Journal, 32(11):1668–1676.

[Bendel and Petersen, 1983] Bendel, W. L. and Petersen, E. L. (1983). Proton upsets in orbit. IEEE Transactions on Nuclear Science, 30(6):4481–4485.

[Bertotti and Farinella, 1990] Bertotti, B. and Farinella, P. (1990). Physics of the Earth and the Solar System. Kluwer Academic Publishers.

[Binder, 1988] Binder, D. (1988). Analytic SEU Rate Calculation compared to Space Data. IEEE Transactions on Nuclear Science, 35(6):1570–1572.

[Bone, 2007] Bone, N. (2007). Aurora: Observing and Recording Nature’s Spectacular Light Show. Springer.

[Boris, 1970] Boris, J. (1970). Relativistic plasma simulation-optimization of a hybrid code. Proceeding of Fourth Conference on Numerical Simulations of Plasmas.

[Brizard and Chan, 1999] Brizard, A. J. and Chan, A. A. (1999). Nonlinear relativistic gyrokinetic VlasovMaxwell equations. Physics of Plasmas, 6(12):4548–4558.

[Brown et al., 2018] Brown, M., Korteb, M., Holme, R., Wardinski, I., and Gunnarson, S. (2018). Earth’s magnetic field is probably not reversing. Proceedings of the National Academy of Sciences of the United States of America, 115(20):5111–5116.

[Buhler et al., 1997] Buhler, P., Zehnder, A., Desorger, L., Hajdas, W., Daly, E., and Adams, L. (1997). Measurements of the Radiation Belts from MIR and STRV 1994-1997. In on the High Energy Radiation Background in Space, C., editor, Conference on the High Energy Radiation Background in Space. Workshop Record, Snowmass, pages 108–113. USA.

[Buneman, 1967] Buneman, O. (1967). Time-reversible difference procedures. Journal of Computational Physics, 1(4):517–535.

[Burrell, 1964] Burrell, M. O. (1964). The calculation of proton penetration and dose rates. NASA Technical Memorandum, NASA TM X-(N64-30510):78.

[Campana et al., 2014] Campana, R., Orlandini, M., Del Monte, E., Feroci, M., and Frontera, F. (2014). The radiation environment in a low earth orbit: the case of BeppoSAX. Exp. Astron., 37:599–613.

[Campbell et al., 1992] Campbell, A., McDonald, P., and Ray, K. (1992). Single event upset rates in space. IEEE Transactions on Nuclear Science, 39(6):1828–1835.

[Casadio and Arino, 2011] Casadio, S. and Arino, O. (2011). Monitoring the South Atlantic Anomaly using ATSR instrument series. Adv. Space Res., 48(6):1056–1066.

[Chaisson, 1998] Chaisson, E. (1998). The Hubble Wars: Astrophysics Meets Astropolitics in the Two-billion-dollar Struggle Over the Hubble Space Telescope. Harvard University Press.

[Chulliat et al., 2015] Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., Woods, A., Ridley, V., Maus, S., and Thomson, A. (2015). The US/UK World Magnetic Model for 2015-2020: Technical Report. Technical report, National Geophysical Data Center, NOAA.

[Cl´ement, 2007] Cl´ement, G. (2007). Fundamentals of Space Medicine. Springer Science & Business Media.

[Cnossen and Matzka, 2016] Cnossen, I. and Matzka, J. (2016). Changes in solar quiet magnetic variations since the Maunder Minimum: A comparison of historical observations and model simulations. Journal of Geophysical Research : Space Physics, pages 520–535.

[Cnossen and Richmond, 2012] Cnossen, I. and Richmond, A. D. (2012). How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system. Journal of Geophysical Research, 117.

[Cnossen et al., 2012] Cnossen, I., Wiltberger, M., and Ouellette, J. E. (2012). The effects of seasonal and diurnal variations in the earth’s magnetic dipole orientation on solar wind–magnetosphere-ionosphere coupling. Journal of Geophysical Research, 117.

[Cottaar and Lekic, 2016] Cottaar, S. and Lekic, V. (2016). Morphology of seismically slow lower-mantle structures. Geophysical Journal International, 207:1122–1136.

[Curtis, 2019] Curtis, H. D. (2019). Orbital Mechanics for Engineering Students. Butterworth-Heinemann.

[Da Silva and Rocco, 2017] Da Silva, M. R. and Rocco, E. M. (2017). Analysis of the passage of a spacecraft between the Van Allen belts considering a low and high solar activity. Journal of Physics: Conference Series, 911(1).

[Dachev et al., 2002] Dachev, T., Tomov, B., Matviichuk, Y., Dimitrov, P., Lemaire, J., Gregoire, G., Cyamukungu, M., Schmitz, H., Fujitaka, K., Uchihori, Y., Kitamura, H., Reitz, G., Beaujean, R., Petrov, V., Shurshakov, V., Benghin, V., and Spurny, F. (2002). Calibration results obtained with liulin-4 type dosimeters. Advances in Space Research, 4:917–925.

[Dachev, 2018] Dachev, T. P. (2018). South-Atlantic Anomaly magnetic storms effects as observed outside the International Space Station in 2008–2016. Journal of Atmospheric and Solar-Terrestrial Physics, 179:251–260.

[de Pater and Lissauer, 2010] de Pater, I. and Lissauer, J. J. (2010). Planetary Sciences. Cambridge University Press.

[Domingos et al., 2017] Domingos, J., Jault, D., Alexandra Pais, M., and Mandea, M. (2017). The South Atlantic Anomaly throughout the solar cycle. Earth and Planetary Science Letters, 473:154–163.

[Dragt, 1971] Dragt, A. J. (1971). Solar cycle modulation of the radiation belt proton flux. Journal of Geophysical Research, 76(10):2313–2344.

[Easly, 2007] Easly, S. M. (2007). Anisotropy in the South Atlantic Anomaly. Master’s thesis, Department of Engineering Physics, Graduate School of Engineering and Management, Air Force Institute of Technology, Ohio.

[Elkington et al., 2002] Elkington, S. R., Hudson, M. K., Wiltberger, M. J., and Lyon, J. G. (2002). MHD/particle simulations of radiation belt dynamics. Journal of Atmospheric and Solar-Terrestrial Physics, 64(5-6):607–615.

[Engel et al., 2015] Engel, M. A., Kress, B. T., Hudson, M. K., and Selesnick, R. S. (2015). Simulations of inner radiation belt proton loss during geomagnetic storms. Journal of Geophysical Research: Space Physics, 120:9323–9333.

[Federico et al., 2015] Federico, C. A., Gon¸calez, O. L., Caldas, L. V. E., Pazianotto, M. T., Dyer, C., Caresana, M., and Hands, A. (2015). Radiation measurements onboard aircraft in the South Atlantic region. Radiation Measurements, 82:14–20.

[Fennelly et al., 2015] Fennelly, J. A., Ober, D. M., Wilson, G. R., Paul, T., Brien, O., and Huston, S. L. (2015). South Atlantic Anomaly and CubeSat Design Considerations. Solar Physics and Space Weather Instrumentation VI: Conference 9604, The International Society for Optics and Photonics, pages 1–15.

[Feshchenko et al., 2000] Feshchenko, E. Y., Maltsev, Y. P., and Ostapenko, A. A. (2000). Dependence of the magnetospheric magnetic field on the storm activity. In SP-443, A. W. E., editor, Congress Center of the Arctic and Antarctic Research Institute, page 431. ESA, ESA.

[Finlay, 2011] Finlay, C. (2011). Observational geomagnetism. Technical report, ETH, Zurich.

[Finlay et al., 2016] Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., and Tøffner-Clausen, L. (2016). Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model Swarm Science Results after two years in Space 1. Geomagnetism. Earth, Planets and Space, 68(1):1–18.

[Ganushkina et al., 2018] Ganushkina, N. Y., Liemohn, M. W., and Dubyagin, S. (2018). Current Systems in the Earth’s Magnetosphere. Reviews of Geophysics, 56(2):309–332.

[Ganushkina et al., 2005] Ganushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Sergeev, V. A., Lvova, E. A., Yahnina, T. A., Yahnin, A. G., and Fritz, T. (2005). Proton isotropy boundaries as measured on midand low-altitude satellites. Annales Geophysicae, 23:1839–1847.

[Gemelos, 2011] Gemelos, E. S. (2011). Global Assessment of Precipitation of Radiation Belt Electrons by Electromagnetic Waves from Lightning. PhD thesis, Stanford University.

[Girgis and Hada, 2018] Girgis, K. M. and Hada, T., editors (2018). Long-Term Variations of the Solar Wind Effects on South Atlantic Anomaly (SAA) using Tsyganenko Model, volume 4. Kyushu University, International Exchange and Innovation Conference on Engineering & Sciences (IEICES).

[Girgis et al., 2020] Girgis, K. M., Hada, T., and Matsukiyo, S. (2020). Solar wind parameter and seasonal variation effects on the South Atlantic Anomaly using Tsyganenko Models. Earth Planets Space, 72(100).

[Gradwell and Rainford, 2016] Gradwell, D. and Rainford, D. J. (2016). Ernsting’s Aviation and Space Medicine 5E. CRC Press.

[Grigoryan et al., 2008] Grigoryan, O. R., Romashova, V. V., and Petrov, A. N. (2008). SAA drift: Experimental results. Adv. Space Res., 41(1):76–80.

[Hada and Matsukiyo, 2017] Hada, T. and Matsukiyo, S. (2017). Lecture notes: Numerical methods in space plasma physics. Technical report, Department of Earth System Science and Technology (ESST), Interdisciplinary Graduate School of Engineering Sciences (IGSES), Kyushu University.

[Heckman and Nakano, 1963] Heckman, H. H. and Nakano, G. H. (1963). East-west asymmetry in the flux of mirroring geomagnetically trapped protons. Journal of Geophysical Research, 68(8):2117–2120.

[Heirtzler et al., 2002] Heirtzler, J. R., Allen, J. H., and Wilkinson, D. C. (2002). Ever-present South Atlantic Anomaly damages spacecraft. EOS, Transactions, American Geophysical Union, 83(15):165–172.

[Hudson et al., 1997] Hudson, M. K., Elkington, S. R., Lyon, J. G., Marchenko, V. A., Roth, I., Temerin, M., Blake, J. B., Gussenhov, M. S., and Wygant, J. R. (1997). Simulations of radiation belt formation during storm sudden commencements. Journal of Geophysical Research, 102(A7):14087–14102.

[Huston et al., 1996] Huston, S., Kuck, G., and Pfitzer, K. (1996). Low-altitude trapped radiation model using TIROS/NOAA data. Radiation Belts: Models and Standards, 97:119–122.

[Huston and Pfitzer, 1998] Huston, S. and Pfitzer, K. (1998). Space environment effects: Low-altitude trapped radiation model. Technical Report, NASA/CR-1998-208593.

[Jones et al., 2017] Jones, A. D., Kanekal, S. G., Baker, D. N., Klecker, B., Looper, M. D., Mazur, J. E., and Schiller, Q. (2017). SAMPEX observations of the South Atlantic anomaly secular drift during solar cycles 22–24. Space Weather, 15:44–52.

[Kamide et al., 1999] Kamide, Y., Kokubun, S., Bargatze, L. F., and Frank, L. A. (1999). The size of the polar cap as an indicator of substorm energy. Physical Chemical Earth, 24(1-3):119–127.

[Kress et al., 2015] Kress, B. T., Hudson, M. K., Selesnick, R. S., Mertens, C. J., and Engel, M. (2015). Modeling geomagnetic cutoffs for space weather applications. Journal of Geophysical Research: Space Physics, 120:5694–5702.

[Kronberg et al., 2015] Kronberg, E. A., Grigorenko, E. E., Haaland, S. E., Daly, P., Delcourt, D. C., Luo, H., Kistler, L. M., and Dandouras, I. (2015). Distribution of energetic Oxygen and Hydrogen in the near-Earth plasma sheet. Journal of Geophysical Research: Space Physics, 120:3415–3431.

[Kubyshkina et al., 2009] Kubyshkina, M., Sergeev, V., Tsyganenko, N., Angelopoulos, V., Runov, A., Singer, H., Glassmeier, K. H., Auster, H. U., and Baumjohann, W. (2009). Toward adapted time-dependent magnetospheric models: A simple approach based on tuning the standard model. Journal of Geophysical Research, 114(A00C21).

[Limousin et al., 2015] Limousin, O., Renaud, D., Horeau, B., Dubos, S., Laurent, P., Lebrun, F., Chipaux, R., Polo, C. B., Marcinkowski, R., Kawaharada, M., Watanabe, S., Ohta, M., Sato, G., and Takahashi, T. (2015). Nuclear Instruments and Methods in Physics Research A ASTRO-H CdTe detectors proton irradiation at PIF. Nuclear Inst. and Methods in Physics Research, A, 787:328–335.

[Logsdon, 1998] Logsdon, T. (1998). Orbital Mechanics: Theory and Applications. John Wiley & Sons.

[Looper and Blake, 2005] Looper, M. D. and Blake, J. B. (2005). Response of the inner radiation belt to the violent sun-earthconnection events of october–november 2003. GEOPHYSICAL RESEARCH LETTERS, 32.

[Lorentzen et al., 2002] Lorentzen, K. R., Mazur, J. E., Looper, M. D., Fennell, J. F., and Blake, J. B. (2002). Multisatellite observations of mev ion injections during storms. JOURNAL OF GEOPHYSICAL RESEARCH, 107(A9).

[Lowman, 2002] Lowman, P. D. (2002). Exploring Space, Exploring Earth: New Understanding of the Earth from Space Research. Cambridge University Press.

[L¨uhr et al., 2017] L¨uhr, H., Xiong, C., Olsen, N., and Le, G. (2017). Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents. Space Science Reviews, 206(1-4):521–545.

[Malin and Isikara, 1976] Malin, S. and Isikara, A. (1976). Annual variation of the geomagnetic field. Geophys. J. R. Astron. Soc., 47:445–457.

[Matzner, 2001] Matzner, R. A. (2001). Dictionary of Geophysics, Astrophysics, and Astronomy. CRC Press.

[Maurer et al., 2008] Maurer, R. H., Fraeman, M. E., Martin, M. N., and Roth, D. R. (2008). Harsh environments: Space radiation environment, effects, and mitigation. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 28(1):17–29.

[Meng, 1982] Meng, C.-I. (1982). Latitudinal variation of the polar cusp during a geomagnetic storm. Geophysical Research Letters, 9(1):60–63.

[Meng, 1984] Meng, C.-I. (1984). Dynamic variation of the auroral oval during intense magnetic storms. Journal of Geophysical Research, 89(A1):227–235.

[Messenger and Ash, 2013] Messenger, G. and Ash, M. (2013). Single Event Phenomena. Springer Science & Business Media.

[Nakano and Heckman, 1968] Nakano, G. and Heckman, H. (1968). Evidence for solar-cycle changes in the inner-belt protons. Phys. Rev. Lett., 20(15):806–809.

[Narici et al., 2015] Narici, L., Casolino, M., Fino, L. D., Larosa, M., Picozza, P., and Zaconte, V. (2015). Radiation survey in the International Space Station. Journal of Space Weather and Space Climate, 37:1–14.

[NASA, 1967] NASA (1967). GEMINI Summary Conference. Technical report, Manned Spacecraft Center, Scientific and Technical Information Division, Office of Technology Utilization, NASA.

[Norberg, 2013] Norberg, C. (2013). Human Spaceflight and Exploration. Springer Science & Business Media.

[Northrop, 1963a] Northrop, T. G. (1963a). Adiabatic charged-particle motion. Reviews of Geophysics, 1.

[Northrop, 1963b] Northrop, T. G. (1963b). The Adiabatic Motion of Charged Particles. Interscience Publishers, John Wiley and Sons, New York.

[Okpala and Ogbonna, 2018] Okpala, K. C. and Ogbonna, C. E. (2018). On the mid-latitude ionospheric storm association with intense geomagnetic storms. Advances in Space Research, 61(7):1858–1872.

[Olsen et al., 2006] Olsen, N., L¨uhr, H., Sabaka, T. J., Mandea, M., Rother, M., Tøffner-Clausen, L., and Choi, S. (2006). CHAOS - A model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophysical Journal International, 166(1):67–75.

[Ozt¨urk, 2012] ¨ Ozt¨urk, M. K. (2012). Trajectories of charged particles trapped in Earth’s magnetic field. ¨ American Journal of Physics, 80(5):420–428.

[Pav´on-Carrasco and De Santis, 2016] Pav´on-Carrasco, F. J. and De Santis, A. (2016). The South Atlantic Anomaly: The Key for a Possible Geomagnetic Reversal. Frontiers in Earth Science, 4:40.

[Petersen, 2011] Petersen, E. (2011). Single Event Effects in Aerospace. John Wiley & Sons.

[Petersen et al., 1982] Petersen, F. L., Shapiro, P., Adams, J. H., and Burke, E. A. (1982). Calculation of cosmicray induced soft upsets and scaling in VLSI devices. IEEE Transactions on Nuclear Science, 29(6):2055–2063.

[Pierrard et al., 2014] Pierrard, V., Lopez Rosson, G., Borremans, K., Lemaire, J., Maes, J., Bonnewijn, S., Van Ransbeeck, E., Neefs, E., Cyamukungu, M., Benck, S., Bonnet, L., Borisov, S., Cabrera, J., Gr´egoire, G., Semaille, C., Creve, G., De Saedeleer, J., Desoete, B., Preud’homme, F., Anciaux, M., Helderweirt, A., Litefti, K., Brun, N., Pauwels, D., Quevrin, C., Moreau, D., Punkkinen, R., Valtonen, E., Hajdas, W., and Nieminen, P. (2014). The energetic particle telescope: First results. Space Sci. Rev., 184:87–106.

[Pisacane, 2014] Pisacane, V. (2014). Space radiation and its effects on space systems and astronauts. Applied Technology Institute (ATI) Courses.

[Pisacane, 2005] Pisacane, V. L. (2005). Fundamentals of Space Systems. Oxford University Press.

[Press et al., 1997] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1997). Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press.

[Qin et al., 2014] Qin, M., Zhang, X., Ni, B., Song, H., Zou, H., , and Sun, Y. (2014). Solar cycle variations of trapped proton flux in the inner radiation belt. Journal of Geophysical Research: Space Physics.

[Rauschenbakh et al., 2006] Rauschenbakh, V., Ovchinnikov, M. Y., and McKenna-Lawlor, S. M. (2006). Essential Spaceflight Dynamics and Magnetospherics. Springer Science & Business Media.

[Ridpath, 2012] Ridpath, I. (2012). A Dictionary of Astronomy. OUP Oxford.

[Saito et al., 2010] Saito, S., Miyoshi, Y., and Seki, K. (2010). A split in the outer radiation belt by magnetopause shadowing: Test particle simulations. Journal of Geophysical Research, 115.

[Sauvaud et al., 2013] Sauvaud, J. A., Walt, M., Delcourt, D., Benoist, C., Penou, E., Chen, Y., and Russell, C. T. (2013). Inner radiation belt particle acceleration and energy structuring by drift resonance with ULF waves during geomagnetic storms. Journal of Geophysical Research: Space Physics, 118(4):1723–1736.

[Schaefer et al., 2016] Schaefer, R. K., Paxton, L. J., Selby, C., Ogorzalek, B., Romeo, G., Wolven, B., and et al. (2016). Observation and modeling of the south atlantic anomaly in low earth orbit using photometric instrument data. Space Weather-the International Journal of Research and Applications, 14(5):330–342.

[Scherer et al., 2005] Scherer, K., Fichtner, H., and Bernd Heber, U. M. (2005). Space Weather: The Physics Behind a Slogan. Springer Science & Business Media.

[Selesnick et al., 2010] Selesnick, R. S., Hudson, M. K., and Kress, B. T. (2010). Injection and loss of inner radiation belt protons during solar proton events and magnetic storms. Journal of Geophysical Research, 115.

[Sergeev, 1990] Sergeev, V. A. (1990). Polar cap and cusp boundaries at day and night. J. Geomag. Geoelectr., 42:683–695.

[Sergeev and Tsyganenko, 1982] Sergeev, V. A. and Tsyganenko, N. A. (1982). Energetic particle losses and trapping boundaries as deduced from calculations with a realistic magnetic field model. Planet. Space Sci., 30(10):999–1006.

[Shevchenko et al., 2010] Shevchenko, I. G., Sergeev, V., Kubyshkina, M., Angelopoulos, V., Glassmeier, K. H., and Singer, H. J. (2010). Estimation of magnetosphere-ionosphere mapping accuracy using isotropy boundary and themis observations. Journal of Geophysical Research, 115(A11206).

[Shore et al., 2016] Shore, R. M., Whaler, K. A., Macmillan, S., Beggan, C., Vel´ımsk´y, J., , and Olsen, N. (2016). Decadal period external magnetic field variations determined via eigenanalysis. J. Geophys. Res. Space Physics, 121:5172–5184.

[Smart and Shea, 1994] Smart, D. F. and Shea, M. A. (1994). Geomagnetic cutoffs: a review for space dosimetry applications. Advances in Space Research, 14(10):1994.

[Smart and Shea, 2005] Smart, D. F. and Shea, M. A. (2005). A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft. Advances in Space Research, 36:2012–2020.

[SP., 1962] SP., N. (1962). Astronomy and Space Sciences, volume 404. Scientific and Technical Information Office, NASA.

[Stasiewicz, 1991] Stasiewicz, K. (1991). Polar cusp topology and position as a function of interplanetary magnetic field and magnetic activity: Comparison of a model with Viking and other observations. Journal of Geophysical Research, 96(A9):15789–15800.

[Stassinopoulos et al., 2015] Stassinopoulos, E. G., Xapsos, M. A., and Stauffer, C. A. (2015). Forty-Year ”Drift” and Change of the SAA. NASA Technical Memorandum, 217547(December 2015):78.

[Stauning et al., 2008] Stauning, P., Troshichev, O., and Janzhura, A. (2008). The Polar Cap (PC) indices: Relations to solar wind parameters and global magnetic activity. Journal of Atmospheric and Solar-Terrestrial Physics, 70:2246–2261.

[Stern, 1975] Stern, D. P. (1975). The motion of a proton in the equatorial magnetosphere. Journal of Geophysical Research, 80(4):595–599.

[Stoer and Bulirsch, 1980] Stoer, J. and Bulirsch, R. (1980). Introduction to Numerical Analysis. SpringerVerlag Berlin Heidelberg.

[Stubbs et al., 2004] Stubbs, T. J., Cargill, P. J., Lockwood, M., Grande, M., Kellett, B. J., and Perry, C. H. (2004). Extended cusp-like regions and their dependence on the polar orbit, seasonal variations and interplanetary conditions. Journal of Geophysical Research, 109(A09210).

[Sturrock, 1994] Sturrock, P. (1994). Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas, chapter 4, page 47. Cambridge University Press.

[Suparta et al., 2017] Suparta, W., Gusrizal, Karel, K., and Isa, Z. (2017). A hierarchical Bayesian spatiotemporal model to forecast trapped particle fluxes over the SAA region. Terr. Atmos. Ocean. Sci., 28(3):357– 370.

[Takagi et al., 1993] Takagi, S., Nakamura, T., Kohno, T., Shiono, N., and Makino, F. (1993). Observation of Space Radiation Environment with EXOS-D. IEEE Transactions on Nuclear Science, 40(6):1491–1497.

[Tao et al., 2007] Tao, X., Chan, A. A., and Brizard, A. J. (2007). Hamiltonian theory of adiabatic motion of relativistic charged particles. Physics of Plasmas, 14(9):1–20.

[Terra-Nova et al., 2017] Terra-Nova, F., Amit, H., A. Hartmann, G., I.F. Trindade, R., and J. Pinheiro, K. (2017). Relating the South Atlantic Anomaly and geomagnetic flux patches. Physics of the Earth and Planetary Interiors, 266:39–53.

[Th´ebault et al., 2015] Th´ebault, E., C Finlay, C., D Beggan, C., and Alken, P. (2015). International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space, page 67:79.

[Toggweiler, 2011] Toggweiler, M. (2011). An adaptive time integration method for more efficientsimulation of particle accelerators. Master’s thesis, Swiss Federal Institute of Technology in Zurich (ETH).

[Tsyganenko, 1979] Tsyganenko, N. A. (1979). Subroutines and tables for calculation of the geomagnetic field. WDC-B2 issue.

[Tsyganenko, 1989] Tsyganenko, N. A. (1989). A magnetospheric magnetic field model with awarped tail current sheet. Planet. Space Sci., 37:5–20.

[Tsyganenko, 1995] Tsyganenko, N. A. (1995). Modeling the earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research.

[Tsyganenko, 1996] Tsyganenko, N. A., editor (1996). Effects of the solar wind conditions in the global magnetospheric configurations as deduced from data-based field models. European Space Agency, International Conference on Substorms, Proceedings of the 3rd International Conference.

[Tsyganenko, 2002a] Tsyganenko, N. A. (2002a). A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. Journal of Geophysical Research: Space Physics, 107.

[Tsyganenko, 2002b] Tsyganenko, N. A. (2002b). A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. Journal of Geophysical Research: Space Physics, 107.

[Tsyganenko, 2013] Tsyganenko, N. A. (2013). Data-based modelling of the earth’s dynamic magnetosphere: a review. Annales Geophysicae, 31:1745–1772.

[Tsyganenko and Sitnov, 2005] Tsyganenko, N. A. and Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research: Space Physics, 110.

[Ukhorskiy et al., 2006] Ukhorskiy, A. Y., Anderson, B. J., Takahashi, K., and Tsyganenko, N. A. (2006). Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophysical Research Letters, 33(6):2–5.

[Ukhorskiy and Sitnov, 2013] Ukhorskiy, A. Y. and Sitnov, M. I. (2013). Dynamics of radiation belt particles. Space Science Reviews, 179:545–578.

[Underwood et al., 1993] Underwood, C. I., Ecoffet, R., Duzellier, S., and Faguere, D. (1993). Observations of single-event upset and multiple-bit upset in non-hardened high-density srams in the TOPEX/Poseidon orbit. IEEE Radiation Effects Data Workshop, pages 85–92.

[Volland, 1973] Volland, H. (1973). A Semiempirical Model of Large-Scale Magnetospheric Electric Fields. Journal of Geophysical Research, 78(1):171–180.

[Walt, 2005] Walt, M. (2005). Introduction to Geomagnetically Trapped Radiation, chapter 4, page 47. Cambridge University Press.

[Weimer, 1995] Weimer, D. R. (1995). Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients. Journal of Geophysical Research, 100(A10):19595.

[Weimer, 2005] Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research: Space Physics, 110(A5):1–21.

[Weiss et al., 1997] Weiss, L. A., Thomsen, M. F., D., R. G., and McComas, D. J. (1997). An examination of the tsyganenko (t89a) field model using a database of two-satellite magnetic conjunctions. Journal of Geophysical Research, 102(A3):4911–4918.

[Ye et al., 2017] Ye, Y., Zou, H., Zong, Q., Chen, H., Wang, Y., Yu, X., and Shi, W. (2017). The secular variation of the center of geomagnetic South Atlantic Anomaly and its effect on the distribution of inner radiation belt particles. Space Weather, 15.

[Yu et al., 2017] Yu, Y., Jordanova, V. K., Ridley, A. J., Toth, G., and Heelis, R. (2017). Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics. Journal of Geophysical Research: Space Physics, 122(5):5321–5338.

[Zou et al., 2015] Zou, H., Li, C., Zong, Q., Parks, G. K., Pu, Z., Chen, H., Xie, L., and Zhang, X. (2015). Short-term variations of the inner radiation belt in the South Atlantic Anomaly. Journal of Geophysical Research: Space Physics.

[Zou et al., 2011] Zou, H., Zong, Q. G., Parks, G. K., Pu, Z. Y., Chen, H. F., and Xie, L. (2011). Response of high-energy protons of the inner radiation belt to large magnetic storms. Journal of Geophysical Research, 116.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る