リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Investigations of Dynamics in the Quantum Hall Regime by Time-Resolved Measurements」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Investigations of Dynamics in the Quantum Hall Regime by Time-Resolved Measurements

Matsuura Masahiro 東北大学

2020.03.25

概要

In this thesis, the dynamics in the quantum Hall regime were investigated using a time-domain charge transport measurement and a photoluminescence microscopy. In this chapter, the main results and discussions are summarised.

The time-domain charge transport measurement was performed on a QH device fabricated from a GaAs/AlGaAs heterostructure wafer. The transport properties of the charge wave packet (excited QH edge state) were studied at filling factor ν = 1 QH regime. We observed the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. It was shown that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state . From these results, it was interpreted that the dense and sparse regions of the charge-density wave packet wave packet correspond to convexity and concavity of the boundary of the two-dimensional electron system (2DES).

We also conducted time-resolved photoluminescence (PL) measurements with a QH device with a GaAs/AlGaAs quantum well structure to investigate the radiative decay time of the charged excitons in a QH regime. It was found that the decay time for the singlet state is longer than the triplet state. Further more, the decay times of the both states reach the longest in the vicinity of the ν = 1, 2/5 regions. This is interpreted to mean that the localization of the electron and hole wavefunctions diminish the overlap integral in the QH system.

Finally, we performed a novel measurement which utilizes the time and spatially resolved microscopy.A concavity-like pattern was observed in the PL intensity map plotted as func- tion of time and space.It was interpreted that the propagation of the excited edge state is accompanied by the density wave and deformation of the confinement potential. This results provides the relevant information that supports the Wen’s theory.

この論文で使われている画像

参考文献

[1] R. B. Laughlin. Quantized hall conductivity in two dimensions. Phys. Rev. B, 23, 1981.

[2] J. Weis and K. von Klitzing. Metrology and microscopic picture of the integer quantum hall effect. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,, 369(1953), 2011.

[3] I. V. Kukushkin, K. v. Klitzing, and K. Eber. Spin polarization of composite fermions: Measurements of the fermi energy. Phys. Rev. Lett., 82(18), 1999.

[4] I. V. Kukushkin, J. H. Smet, K. von Klitzing, and K. Eberl. Optical investigation of spin-wave excitations in fractional quantum hall states and of interaction between composite fermions. Phys. Rev. Lett., 85(17), 2000.

[5] A. Pinczuk L. Pfeiffer B. B. Goldberg, D. Heiman and K. Wes. Optical investigations of the integer and fractional quantum hall effects: Energy plateaus, intensity minima, and line splitting in band-gap emission. Phys. Rev. Lett., 65(5), 1990.

[6] L. Gravier, M. Potemski, P. Hawrylak, and B. Etienne. Electron-electron interactions in emission from a two-dimensional electron gas in quantizing magnetic fields. Phys. Rev. Lett., 80(5), 1998.

[7] John N. Moore, Junichiro Hayakawa, Takaaki Mano, Takeshi Noda, and Go Yusa. Optically imaged striped domains of nonequilibrium electronic and nuclear spins in a fractional quantum hall liquid. Phys. Rev. Lett., 118, 2017.

[8] G. Yusa, H. Shtrikman, and I. Bar-Joseph. Charged excitons in the fractional quantum hall regime. Phys. Rev.Lett, 87:19–22, 2001.

[9] F. Pulizzi, D. Sanvitto, P.C.M. Christianen, A.J. Shields, S.N. Holmes, M.Y. Simmons, D.A. Ritchiea, M. Pepper, and J.C. Maan. Optical imaging of trion diffusion and drift in gaas quantum wells. Phys. Rev. B, 68(205304), 2003.

[10] S. H. Tessmer, P. I. Glicofridis, R. C. Ashoori, L. S. Levitov, and M. R. Melloch. Subsurface charge accumulation imaging of a quantum hall liquid. Nature, 392(51), 1998.

[11] K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, R. Wiesendanger, and M. Morgenstern. Quantum hall transition in real space: From localized to extended states. Phys. Rev. Lett., 101(256802), 2008.

[12] D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, M. Kindermann, P. N. First, and J. A. Stroscio. Real-space mapping of magnetically quantized graphene states. Nature Phys., 6(811), 2010.

[13] Vivek Srinivas, John Hryniewicz, Yung Jui Chen, and Colin E. C. Wood. Intrinsic linewidths and radiative lifetimes of free excitons in gaas quantum wells. Phys. Rev. B, 46:10193, 1992.

[14] D. Sanvitto, R. A. Hogg, A. J. Shields, D. M. Whittaker, M. Y. Simmons, D. A. Ritchie, and M. Pepper. Rapid radiative decay of charged excitons. Phys. Rev.B, 62(20), 2000.

[15] K.-B. Broocks, B. Su P. Schröter, Ch. Heyn, D. Heitmann, W. Wegscheider, V. M. Apalkov, T. Chakraborty, I. E. Perakis, and C. Schüller. Linear and ultrafast optical spectroscopy in the regime of the quantum hall effect. p hys. stat. sol. (b), 245(2), 2008.

[16] B. I. Halperin. Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25, 1982.

[17] M. Büttiker. Absence of backscattering in the quantum hall effect in multiprobe conductors. Phys. Rev. B, 38, 1988.

[18] T. Ihn. Semiconductor nanostructures: Quantum states and electronic transport. Oxford University Press, 2010.

[19] D. K. Ferry and S. M. Goodnick. Transport in nanostructures, vol. 6 of cambridge studies in semiconductor physics and microelectronic engineering, 1 ed. Cambridge University Press, 1997.

[20] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman. Electrostatics of edge channels. Phys. Rev. B, 46, 1992.

[21] C. W. J. Beenakker. Edge channels for the fractional quantum hall effect. Phys. Rev. Lett, 64, 1990.

[22] A. M. Chang, L. N. Pfeiffer, and K. W. West. Observation of chiral luttinger behavior in electron tunneling into fractional quantum hall edges. Phys. Rev. Lett, 77(2538), 1996.

[23] book. book1. book, book(book):book, book.

[24] C. F. Klingshirn. Semiconductor optics 4th edition. (Springer Verlag, Berlin,, 2002.

[25] Holger T. Grahan. Handoutaino hikaribussei. Phys. Rev.B, 62(12):8232–8239, 2000.

[26] R. Dingle, W. Wiegmann, and C. H. Henry. Charged excitons in the fractional quantum hall regime. Phys. Rev.Lett, 33(14), 1974.

[27] Nakayama. "handoutai no hikaribussei"[optical properties of semiconductors]. Coro- nasha, 2015.

[28] J. M. LUTTINGER. Quantum theory of cyclotron resonance in semiconductors: General theory. Phys. Rev., 102(4), 1956.

[29] R Winkler, Dimitrie Culcer, S J Papadakis, B Habib, and M Shayegan. Spin orientation of holes in quantum wells. Semicond. Sci. Technol., 23(114017), 2008.

[30] K. Kheng, R. T. Cox, Merle Y. d’ Aubigné, Franck Bassani, K. Saminadayar, and S. Tatarenko. Observation of negatively charged excitons x−in semiconductor quantum wells. Phys. Rev. Lett, 71(11), 1993.

[31] Gleb Finkelstein, Hadas Shtrikman, and Israel Bar-Joseph. Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett, 74(6), 1995.

[32] Axel Esser, Erich Runge, and Roland Zimmermann. Charged exciton dynamics in gaas quantum wells. Phys. Rev.B, 62(12):8232–8239, 2000.

[33] A. J. Shields, M. Pepper, M. Y. Simmons, and D. A. Ritchie. Spin-triplet negatively charged excitons in gaas quantum wells. Phys. Rev.B, 52(1):7841–7844, 1995.

[34] Gleb Finkelstein, Hadas Shtrikman, and Israel Bar-Joseph. Negatively and positively charged excitons in gaas/alxga12xas quantum wells. Phys. Rev. B, 53(4), 1996.

[35] G. Finkelstein and I. Bar-Joseph. Charged excitons in gaas quantum wells. Il Nuovo Cimento D, 17, 1995.

[36] D. A. B. Miller, T. C. Damen D. S. Chemla, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus. Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect. Phys. Rev. Lett., 53, 1984.

[37] D. Chemla, W. Knox, D. Miller, S. Schmitt Rink, J. Stark, and R. Zimmermann. The excitonic optical stark effect in semiconductor quantum wells probed with femtosecond optical pulses. J. Lumin., 44:233–246, 1989.

[38] L. S. R. Cavalcante, D. R. da Costa, G. A. Farias, D. R. Reichman, and A. Chave. Stark shift of excitons and trions in two-dimensional materials. Phys. Rev. B, 98, 2018.

[39] J. Hayakawa, K. Muraki, and G. Yusa. Real-space imaging of fractional quantum hall liquids. Nature Nano, 8(31), 2013.

[40] John H. Davies. The physics of low dimensional semiconductors. Cambridge University Press, 2005.

[41] N. Tu et al. Coupling between quantum hall edge channels on opposite sides of a hall bar. Solid State Communications, 283, 2018.

[42] Zolotorev V. M., V. N. Morozov, and E. V. Smirnova. Optical constants of natural and technical media. Chemistry, Leningrad Hall, 1984.

[43] F. Pedrotti, L. Pedrotti, and L. Pedrotti. Introduction to optics. Pearson Prentice Hall, 2007.

[44] D. Yoshioka. The quantum hall effect. Springer, Berlin, 17, 2002.

[45] M. Hashisaka, H. Kamata, N. Kumada, K. Washio, R. Murata, K. Muraki, and T. Fuji- sawa. Distributed-element circuit model of edge magnetoplasmon transport. Phys. Rev. B, 88(235409), 2013.

[46] S. J. Allen, H. L. Stormer, and J. C. M. Dimensional resonance of the two-dimensional electron gas in selectively doped gaas/algaas heterostructures. Phys. Rev. B, 28(4875), 1983.

[47] R. C. Ashoori, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. West. Edge magnetoplasmons in the time domain. Phys. Rev. B, 45(3894(R)), 1992.

[48] D. L. Kovrizhin and J. T. Chalker. Relaxation in driven integer quantum hall edge states. Phys. Rev. Lett, 109(106403), 2012.

[49] H. Kamata, T. Ota, K. Muraki, and T. Fujisawa. Voltage-controlled group velocity of edge magnetoplasmon in the quantum hall regime. Phys. Rev. B, 81(085329), 2010.

[50] M. Hashisaka, N. Hiyama, T. Akiho, K. Muraki, and T. Fujisawa. Waveform measure- ment of charge- and spin-density wavepackets in a chiral tomonaga–luttinger liquid. Nat. Phys., 13(559-562), 2017.

[51] Joseph R. Lakowicz. Principles of fluorescence spectroscopy 3rd edition. Springer, Berlin, 2006.

[52] N. Tu et.al. Design of an achievable, all lattice-matched multijunction solar cell using ingaalassb. IEEE, 283, 2011.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る