リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Trans-crustal structural control of CO2-rich extensional magmatic systems revealed at Mount Erebus Antarctica」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Trans-crustal structural control of CO2-rich extensional magmatic systems revealed at Mount Erebus Antarctica

小川 康雄 Y.Ogawa 東京工業大学 DOI:https://doi.org/10.1038/s41467-022-30627-7

2022.05.30

概要

Erebus volcano, Antarctica, with its persistent phonolite lava lake, is a classic example of an evolved, CO2-rich rift volcano. Seismic studies provide limited images of the magmatic system. Here we show using magnetotelluric data that a steep, melt-related conduit of low electrical resistivity originating in the upper mantle undergoes pronounced lateral re-orientation in the deep crust before reaching shallower magmatic storage and the summit lava lake. The lateral turn represents a structural fault-valve controlling episodic flow of magma and CO2 vapour, which replenish and heat the high level phonolite differentiation zone. This magmatic valve lies within an inferred, east-west structural trend forming part of an accommodation zone across the southern termination of the Terror Rift, providing a dilatant magma pathway. Unlike H2O-rich subduction arc volcanoes, CO2-dominated Erebus geophysically shows continuous magmatic structure to shallow crustal depths of < 1 km, as the melt does not experience decompression-related volatile supersaturation and viscous stalling.

この論文で使われている画像

参考文献

DasGupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007).

Foley, S. F. & Fischer, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

Kyle, P. R., Moore, J. A. & Thirlwall, M. F. Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. J. Petrol. 33, 849–875 (1992).

Kelly, P. J., Kyle, P. R., Dunbar, N. W. & Sims, K. W. W. Geochemistry and mineralogy of the phonolite lava lake, Erebus, Antarctica:1972-2004 and comparison with older lavas. J. Volc. Geoth. Res. 177, 589–605 (2008).

Self, S., Gertisser, R., Thordarson, T., Rampino, M. R., & Wolff, J. A. Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys. Res. Lett. 31, https://doi.org/10.1029/2004GL020925 (2004).

Webster, J. D., Goldoff, B., Sintoni, M. F., Shimizu, N. & De Vivo, B. C-O-H-Cl-S-F volatile solubilities, partitioning, and mixing in phonolitic-trachytic melts and aqueous-carbonic vapor ± saline liquid at 200 MPa. J. Petrol. 55, 2217–2248 (2014).

Dostal, J. Rare earth element deposits of alkaline igneous rocks. Resources 6, 12 (2017).

Iacovino, K., Oppenheimer, C., Scaillet, B. & Kyle, P. Storage and evolution of mafic and intermediate alkaline magmas beneath Ross Island, Antarctica. J. Petrol. 57, 93–118 (2016).

Owens, L., Kyle, P. R., Sharp, Z. & Campbell, A. Origin of low oxygen isotopic compositions in alkalic lavas from Erebus volcano, Antarctica. Geochim. Cosmochim. Acta 308, 310–325 (2021).

Oppenheimer, C. et al. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet. Sci. Lett. 306, 261–271 (2011).

Moussallam, Y., Oppenheimer, C., Scaillet, B. & Kyle, P. Experimental phase equilibrium constraints on the phonolite magmatic system of Erebus volcano. Antarctica. J. Petrol. 54, 1285–1307 (2013).

Rasmussen, D. J. et al. Understanding degassing and transport of CO2-rich alkalic magmas at Ross Island, Antarctica using olivine-hosted melt inclusions. J. Petrol. 58, 841–861 (2017).

Storti, F., Balestrieri, M. L., Balsamo, F., & Rossetti, F. Structural and thermochronological constraints to the evolution of the West Antarctic Rift System in central Victoria Land. Tectonics 27, https://doi.org/10.1029/2006TC002066 (2008).

Sauli, C. et al. Neogene development of the Terror Rift, Western Ross Sea, Antarctica. Geochem. Geophys. Geosys. 22, https://doi.org/10.1029/2020GC009076 (2021).

Wilson, T. Cenozoic structural segmentation of the Transantarctic Mountains rift flank in southern Victoria Land. Glob. Planet. Change 23, 105–127 (1999).

Aitken, A. R. A., Wilson, G. S., Jordan, T., Tinto, K. & Blakemore, H. Flexural controls on late Neogene basin evolution in southern McMurdo Sound, Antarctica. Glob. Planet. Change 80–81, 99–112 (2012).

Behrendt, J. et al. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys. Tectonics 15, 660–676 (1996).

Curewitz, D. & Karson, J. A. Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J. Volc. Geotherm. Res. 79, 149–168 (1997).

Faulds, J. E., & Varga, R. J. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes: in, Accommodation zones and transfer zones. The regional segmentation of the Basin and Range province. ed. by Faulds, J. E., & J. H. Stewart. Geol. Soc. of Amer. Spec. Pap. 323, 1–46 (1998).

Martin, A., Cooper, A. F., Price, R., Kyle, P., & Gamble, J. Erebus Volcanic Province II. Petrology. In: J. L. Smellie, K. S. Panter, A. Geyer (Eds.), Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-Up. Geol. Soc. Lon. Mem. 55, 447-489 (2021).

Esser, R. P., Kyle, P. R. & McIntosh, W. C. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: volcano evolution. Bull. Volc. 66, 671–686 (2004).

Parmelee, D. E. F., Kyle, P. R., Kurz, M. D., Marrero, S. M. & Phillips, F. M. A new Holocene eruptive history of Erebus volcano, Antarctica using cosmogenic 3He and 36Cl exposure ages. Quat. Geochronol. 30, 114–131 (2015).

Chaput, J., Zandomeneghi, Z., Aster, R. C., Knox, H. & Kyle, P. R. Imaging of Erebus volcano using body wave seismic interferometry of Strombolian eruption coda. Geophys. Res. Lett. 39, L07304 (2012).

Zandomeneghi, D. et al. Internal structure of Erebus volcano, Antarctica imaged by high-resolution active-source seismic tomography and coda interferometry. J. Geophys. Res. 118, 1067–1078 (2013)..

Blondel, T., Chaput, J., Derode, A., Campillo, M. & Aubry, A. Matrix approach of seismic imaging: application to the Erebus volcano, Antarctica. J. Geophys. Res. 123, 10936–10950 (2018).

Knox, H. A., Chaput, J. A., Aster, R. C. & Kyle, P. R. Multiyear shallow conduit changes observed with lava lake eruption seismograms at Erebus volcano, Antarctica. J. Geophys. Res. 123, 3178–3196 (2018).

Lawrence, J. F. et al. Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions surface waves, and gravity: implications for uplift models. Geochem. Geophys. Geosys 7, Q10011 (2006).

Finotello, M., Nyblade, A., Julia, J., Wiens, D. & Anandakrishnan, S. Crustal Vp–Vs ratios and thickness for Ross Island and the Transantarctic Mountain front, Antarctica. Geophys. J. Int. 185, 85–92 (2011.

Brenn, G., Hansen, S. & Park, Y. Variable thermal loading and flexural uplift along the Transantarctic Mountains, Antarctica. Geology 45, 463–466 (2017).

Hill, G. J. On the use of electromagnetics for earth imaging of the polar regions. Surv. Geophys. 41, 5–45 (2020).

Wannamaker, P. et al. Uplift of the central transantarctic mountains. Nat. Commun. 8, 1–11 (2017).

Caldwell, T. G., Bibby, H. M. & Brown, C. The magnetotelluric phase tensor. Geophys. J. Int 158, 457–469 (2004).

Bibby, H. M., Caldwell, T. G. & Brown, C. Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys. J. Int 163, 915–930 (2005).

Booker, J. R. The magnetotelluric phase tensor: a critical review. Surv. Geophys. 35, 7–40 (2014).

Hill, G. J. et al. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat. Geosci. 2, 785–789 (2009).

Kordy, M., Wannamaker, P., Maris, V., Cherkaev, E. & Hill, G. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: Forward problem and parameter Jacobians. Geophys. J. Int. 204, 74–93 (2016).

Yoshino, T. & Katsura, T. Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Annu. Rev. Earth Planet. Sci. 41, 605–628 (2013).

Filloux, J. H. Instrumentation and experimental methods for oceanic studies. In Geomagnetism, Vol. 1 (ed. Jacobs, J. A.) 143–248 (Academic Press, 1987).

Kordy, M., Wannamaker, P., Maris, V., Cherkaev, E. & Hill, G. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers—part II: direct data-space inverse solution. Geophys. J. Int 204, 94–110 (2016).

LeMasurier, W. E. Neogene extension and basin deepening in the West Antarctic rift inferred from comparisons with the East African rift and other analogs. Geology 36, 247–250 (2008).

Moore, J. et al. The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia. Am. J. Sci. 308, 1–48 (2008).

Ogawa, Y., Ichiki, M., Kanda, W., Mishina, M., & Asamori, K. Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko volcano, NE Japan. Earth Planets Space 66, https://doi.org/10.1186/s40623-014-0158-y (2014).

Hill, G. J. et al. Structure of the Tongariro Volcanic system: insights from magnetotelluric imaging. Earth Planet. Sci. Lett. 432, 115–125 (2015).

Press, W., Teukolsky, A., Vetterling, T. & Flannery, P. Numerical Recipes in Fortran 77: The Art of Scientific Computing. 1003 (University of Cambridge Press, 1992).

Pommier, A. & Roberts, J. Understanding electrical signals from below Earth’s surface. EOS 99, https://doi.org/10.1029/2018EO108517 (2018).

Pommier, A., Gaillard, F., Pichavant, M. & Scaillet, B. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure. J. Geophys. Res. 113, B05205 (2008).

Manning, C. E. Fluids of the lower crust: deep is different. Annu. Rev. Earth Planet. Sci. 46, 67–97 (2018).

Sibson, R. H. Au-quartz mineralization near the base of the continental seismogenic zone. Geol. Soc. Lon. Spec. Publ. 272, 519 LP–519532 (2007).

Sibson, R. H. Earthquake rupturing in fluid-overpressured crust: how common? Pure Appl. Geophys. 171, 2867–2885 (2014).

Wannamaker, P. E. et al. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 460, 733–736 (2009).

Rowe, C. A., Aster, R. C., Kyle, P. R., Dibble, R. R. & Schlue, J. W. Seismic and acoustic observations at Mount Erebus Volcano, Ross Island, Antarctica, 1994–1998. J. Volc. Geotherm. Res. 101, 105–128 (2000).

Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

Panter, K. S. et al. Melt origin across a rifted continental margin: a case for subduction-related metasomatic agents in the lithospheric source of alkaline basalt, NW Ross Sea, Antarctica. J. Petrol. 59, 517–558 (2018).

Phillips, E. H. et al. The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas. Earth Planet. Sci. Lett. 498, 38–53 (2018).

Ingham, M. R. et al. A magnetotelluric study of Mount Ruapehu volcano, New Zealand. Geophys. J. Int 179, 887–904 (2009).

Bedrosian, P. A., Peacock, J. R., Bowles-Martinez, E., Schultz, A. & Hill, G. J. Crustal inheritance and a top-down control on arc magmatism at Mount St Helens. Nat. Geosci. 11, 865–870 (2018).

Hill, G. J. et al. Temporal magnetotellurics reveals mechanics of the 2012 Mount Tongariro, NZ, Eruption. Geophys. Res. Lett. 47, https://doi.org/10.1029/2019GL086429 (2020).

Ichiki, M. et al. Magma reservoir beneath Azumayama Volcano, NE Japan, as inferred from a three-dimensional electrical resistivity model explored by means of magnetotelluric method. Earth, Planets Space 73, 30 (2021).

Rowlands, D. P., White, R. S. & Haines, A. J. Seismic tomography of the Tongariro Volcanic Centre, New Zealand. Geophys. J. Int. 163, 1180–1194 (2005).

Koulakov, I. & Shapiro, N. Seismic tomography of volcanoes. Encycl. Earthq. Eng. https://doi.org/10.1007/978-3-642-36197-5_51-1 (2015).

Kiser, E. et al. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology 44, 411–414 (2016).

Ulberg, C. W. et al. Local Source Vp and Vs tomography in the Mount St. Helens region with the iMUSH Broadband Array. Geochem. Geophys. Geosys. 21, https://doi.org/10.1029/2019GC008888 (2020).

Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain ~4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

Rasmusesen, D. J., Plank, T. A., Roman, D. C. & Zimmer, M. M. Magmatic water content controls the pre-eruptive depth of arc magmas. Science 375, 1169–1172 (2022).

Huber, C., Townsend, M., Degruyter, W. & Bachmann, O. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. https://doi.org/10.1038/s41561-019-0415-6 (2019).

Chave, A. D. & Jones, A. G. The Magnetotelluric Method: Theory and Practice (Cambridge University Press, 2012).

Worzewski, T., Jegen, M., Kopp, H., Brasse, H. & Castillo, W. T. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat. Geosci. 4, 108–111 (2011).

Wannamaker, P. E. et al. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosys. 15, https://doi.org/10.1002/2014G204 (2014).

Wannamaker, P. E., Stodt, J. A. & Olsen, S. L. Dormant state of rifting below the Byrd Subglacial Basin, West Antarctica, implied by magnetotelluric (MT) profiling. Geophys. Res. Lett. 23, 2983–2986 (1996).

Wannamaker, P. E., Stodt, J. A., Olsen, S. L., Pellerin, L. & Hall, D. Structure and thermal regime beneath the South Pole region, East Antarctica, from magnetotelluric measurements. Geophys. J. Int. 157, 36–54 (2004).

Peacock, J. R. & Selway, K. Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica. J. Geophys. Res. 121, https://doi.org/10.1002/2015JB012677 (2016).

Wannamaker, P. E., Stodt, J. A., Hill, G. J., Maris V. & Kordy, M. A. Thermal regime and state of hydration of the Antarctic upper mantle from regional-scale electrical properties. Geol. Soc. Lon. Mem. 56, 14 https://doi.org/10.1144/M56-2020-4 (2021).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る