リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies.

互, 健二 東京慈恵会医科大学 DOI:info:doi/10.1016/j.neuron.2020.09.042

2021.09.08

概要

A panel of radiochemicals has enabled in vivo positron emission tomography (PET) of tau pathologies in Alz- heimer’s disease (AD), although sensitive detection of frontotemporal lobar degeneration (FTLD) tau inclu- sions has been unsuccessful. Here, we generated an imaging probe, PM-PBB3, for capturing diverse tau de- posits. In vitro assays demonstrated the reactivity of this compound with tau pathologies in AD and FTLD. We could also utilize PM-PBB3 for optical/PET imaging of a living murine tauopathy model. A subsequent clinical PET study revealed increased binding of 18F-PM-PBB3 in diseased patients, reflecting cortical-dominant AD and subcortical-dominant progressive supranuclear palsy (PSP) tau topologies. Notably, the in vivo reactivity of 18F-PM-PBB3 with FTLD tau inclusion was strongly supported by neuropathological examinations of brains derived from Pick’s disease, PSP, and corticobasal degeneration patients who underwent PET scans. Finally, visual inspection of 18F-PM-PBB3-PET images was indicated to facilitate individually based identifi- cation of diverse clinical phenotypes of FTLD on a neuropathological basis.

参考文献

Aguero, C., Dhaynaut, M., Normandin, M.D., Amaral, A.C., Guehl, N.J., Neelamegam, R., Marquie, M., Johnson, K.A., El Fakhri, G., Frosch, M.P., and Gomez-Isla, T. (2019). Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol. Commun. 7, 37.

Akaike, H. (1973). Information theory and an extension of the maximum likeli- hood principle. In 2nd International Symposium on Information Theory, B.N. Petrov and F. Csaki, eds. (Akade´ miai Kiado´ ), pp. 267–281.

Arakawa, A., Saito, Y., Seki, T., Mitsutake, A., Sato, T., Katsumata, J., Maekawa, R., Hideyama, T., Tamura, K., Hasegawa, M., and Shiio, Y. (2020). Corticobasal degeneration with deep white matter lesion diagnosed by brain biopsy. Neuropathology 40, 287–294.

Armstrong, M.J., Litvan, I., Lang, A.E., Bak, T.H., Bhatia, K.P., Borroni, B., Boxer, A.L., Dickson, D.W., Grossman, M., Hallett, M., et al. (2013). Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503.

Betthauser, T.J., Koscik, R.L., Jonaitis, E.M., Allison, S.L., Cody, K.A., Erickson, C.M., Rowley, H.A., Stone, C.K., Mueller, K.D., Clark, L.R., et al. (2020). Amyloid and tau imaging biomarkers explain cognitive decline from late middle-age. Brain 143, 320–335.

Boluda, S., Toledo, J.B., Irwin, D.J., Raible, K.M., Byrne, M.D., Lee, E.B., Lee, V.M., and Trojanowski, J.Q. (2014). A comparison of Ab amyloid pathology staging systems and correlation with clinical diagnosis. Acta Neuropathol. 128, 543–550.

Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer- related changes. Acta Neuropathol. 82, 239–259.

Brendel, M., Scho¨ necker, S., Ho¨ glinger, G., Lindner, S., Havla, J., Blautzik, J., Sauerbeck, J., Rohrer, G., Zach, C., Vettermann, F., et al. (2018). [18F]- THK5351 PET correlates with topology and symptom severity in progressive supranuclear palsy. Front. Aging Neurosci. 9, 440.

Brendel, M., Barthel, H., van Eimeren, T., Marek, K., Beyer, L., Song, M., Palleis, C., Gehmeyr, M., Fietzek, U., Respondek, G., et al. (2020). Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol. e202526.

Bue´ e, L., Bussie` re, T., Bue´ e-Scherrer, V., Delacourte, A., and Hof, P.R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disor- ders. Brain Res. Brain Res. Rev. 33, 95–130.

Cairns, N.J., Bigio, E.H., Mackenzie, I.R., Neumann, M., Lee, V.M., Hatanpaa, K.J., White, C.L., 3rd, Schneider, J.A., Grinberg, L.T., Halliday, G., et al.; Consortium for Frontotemporal Lobar Degeneration (2007). Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 114, 5–22.

Chien, D.T., Szardenings, A.K., Bahri, S., Walsh, J.C., Mu, F., Xia, C., Shankle, W.R., Lerner, A.J., Su, M.Y., Elizarov, A., and Kolb, H.C. (2014). Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J. Alzheimers Dis. 38, 171–184.

Cho, H., Choi, J.Y., Hwang, M.S., Kim, Y.J., Lee, H.M., Lee, H.S., Lee, J.H., Ryu, Y.H., Lee, M.S., and Lyoo, C.H. (2016). In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann. Neurol. 80, 247–258.

Congdon, E.E., and Sigurdsson, E.M. (2018). Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415.

Endo, H., Shimada, H., Sahara, N., Ono, M., Koga, S., Kitamura, S., Niwa, F., Hirano, S., Kimura, Y., Ichise, M., et al. (2019). In vivo binding of a tau imaging probe, [11 C]PBB3, in patients with progressive supranuclear palsy. Mov. Disord. 34, 744–754.

Falcon, B., Zhang, W., Murzin, A.G., Murshudov, G., Garringer, H.J., Vidal, R., Crowther, R.A., Ghetti, B., Scheres, S.H.W., and Goedert, M. (2018). Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561, 137–140.

Forrest, S.L., Kril, J.J., and Halliday, G.M. (2019). Cellular and regional vulner- ability in frontotemporal tauopathies. Acta Neuropathol. 138, 705–727.

Frisch, M.J.T., G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., et al. (2016). Gaussian 16, Revision B.01 (Wallingford CT: Gaussian, Inc.).

Golbe, L.I., and Ohman-Strickland, P.A. (2007). A clinical rating scale for pro- gressive supranuclear palsy. Brain 130, 1552–1565.

Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Ogar, J.M., Rohrer, J.D., Black, S., Boeve, B.F., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014.

Harada, R., Okamura, N., Furumoto, S., Furukawa, K., Ishiki, A., Tomita, N., Tago, T., Hiraoka, K., Watanuki, S., Shidahara, M., et al. (2016). 18F- THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J. Nucl. Med. 57, 208–214.

Harada, R., Ishiki, A., Kai, H., Sato, N., Furukawa, K., Furumoto, S., Tago, T., Tomita, N., Watanuki, S., Hiraoka, K., et al. (2018). Correlations of 18F- THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J. Nucl. Med. 59, 671–674.

Hashimoto, H., Kawamura, K., Igarashi, N., Takei, M., Fujishiro, T., Aihara, Y., Shiomi, S., Muto, M., Ito, T., Furutsuka, K., et al. (2014). Radiosynthesis, photo- isomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clin- ically useful PET probe for imaging of tau pathology. J. Nucl. Med. 55, 1532–1538.

Hashimoto, H., Kawamura, K., Takei, M., Igarashi, N., Fujishiro, T., Shiomi, S., Watanabe, R., Muto, M., Furutsuka, K., Ito, T., et al. (2015). Identification of a major radiometabolite of [11C]PBB3. Nucl. Med. Biol. 42, 905–910.

Hauw, J.J., Daniel, S.E., Dickson, D., Horoupian, D.S., Jellinger, K., Lantos, P.L., McKee, A., Tabaton, M., and Litvan, I. (1994). Preliminary NINDS neuro- pathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 44, 2015–2019.

Ho¨ glinger, G.U., Respondek, G., Stamelou, M., Kurz, C., Josephs, K.A., Lang, A.E., Mollenhauer, B., Mu€ller, U., Nilsson, C., Whitwell, J.L., et al.; Movement Disorder Society-endorsed PSP Study Group (2017). Clinical diagnosis of pro- gressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864.

Honer, M., Gobbi, L., Knust, H., Kuwabara, H., Muri, D., Koerner, M., Valentine, H., Dannals, R.F., Wong, D.F., and Borroni, E. (2018). Preclinical evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as novel PET radio- tracers for imaging tau aggregates in Alzheimer disease. J. Nucl. Med. 59, 675–681.

Hostetler, E.D., Walji, A.M., Zeng, Z., Miller, P., Bennacef, I., Salinas, C., Connolly, B., Gantert, L., Haley, H., Holahan, M., et al. (2016). Preclinical char- acterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J. Nucl. Med. 57, 1599–1606.

Ichise, M., Toyama, H., Innis, R.B., and Carson, R.E. (2002). Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J. Cereb. Blood Flow Metab. 22, 1271–1281.

Ikonomovic, M.D., Abrahamson, E.E., Price, J.C., Mathis, C.A., and Klunk, W.E. (2016). [F-18]AV-1451 positron emission tomography retention in choroid plexus: More than ‘‘off-target’’ binding. Ann. Neurol. 80, 307–308.

Iqbal, K., Liu, F., and Gong, C.X. (2016). Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol. 12, 15–27.

Ishikawa, A., Tokunaga, M., Maeda, J., Minamihisamatsu, T., Shimojo, M., Takuwa, H., Ono, M., Ni, R., Hirano, S., Kuwabara, S., et al. (2018). In vivo visu- alization of tau accumulation, microglial activation, and brain atrophy in a mouse model of tauopathy rTg4510. J. Alzheimers Dis. 61, 1037–1052.

Jack, C.R., Jr., Wiste, H.J., Schwarz, C.G., Lowe, V.J., Senjem, M.L., Vemuri,

., Weigand, S.D., Therneau, T.M., Knopman, D.S., Gunter, J.L., et al. (2018). Longitudinal tau PET in ageing and Alzheimer’s disease. Brain 141, 1517–1528.

Kanazawa, M., Shimohata, T., Toyoshima, Y., Tada, M., Kakita, A., Morita, T., Ozawa, T., Takahashi, H., and Nishizawa, M. (2009). Cerebellar involvement in progressive supranuclear palsy: A clinicopathological study. Mov. Disord. 24, 1312–1318.

Kikuchi, A., Okamura, N., Hasegawa, T., Harada, R., Watanuki, S., Funaki, Y., Hiraoka, K., Baba, T., Sugeno, N., Oshima, R., et al. (2016). In vivo visualization of tau deposits in corticobasal syndrome by 18F-THK5351 PET. Neurology 87, 2309–2316.

Kimura, Y., Ichise, M., Ito, H., Shimada, H., Ikoma, Y., Seki, C., Takano, H., Kitamura, S., Shinotoh, H., Kawamura, K., et al. (2015). PET quantification of tau pathology in human brain with 11C-PBB3. J. Nucl. Med. 56, 1359–1365.

Kimura, Y., Endo, H., Ichise, M., Shimada, H., Seki, C., Ikoma, Y., Shinotoh, H., Yamada, M., Higuchi, M., Zhang, M.R., and Suhara, T. (2016). A new method to quantify tau pathologies with (11)C-PBB3 PET using reference tissue voxels extracted from brain cortical gray matter. EJNMMI Res. 6, 24.

Klein, A., and Tourville, J. (2012). 101 labeled brain images and a consistent hu- man cortical labeling protocol. Front. Neurosci. 6, 171.

Klunk, W.E., Wang, Y., Huang, G.F., Debnath, M.L., Holt, D.P., and Mathis, C.A. (2001). Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci. 69, 1471–1484.

Koga, S., Josephs, K.A., Ogaki, K., Labbe´ , C., Uitti, R.J., Graff-Radford, N., van Gerpen, J.A., Cheshire, W.P., Aoki, N., Rademakers, R., et al. (2016). Cerebellar ataxia in progressive supranuclear palsy: An autopsy study of PSP-C. Mov. Disord. 31, 653–662.

Kouri, N., Whitwell, J.L., Josephs, K.A., Rademakers, R., and Dickson, D.W. (2011). Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat. Rev. Neurol. 7, 263–272.

Kroth, H., Oden, F., Molette, J., Schieferstein, H., Capotosti, F., Mueller, A., Berndt, M., Schmitt-Willich, H., Darmency, V., Gabellieri, E., et al. (2019). Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur. J. Nucl. Med. Mol. Imaging 46, 2178–2189.

Lee, V.M., Goedert, M., and Trojanowski, J.Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159.

Lee, C.M., Jacobs, H.I.L., Marquie´ , M., Becker, J.A., Andrea, N.V., Jin, D.S., Schultz, A.P., Frosch, M.P., Go´ mez-Isla, T., Sperling, R.A., and Johnson, K.A. (2018). 18F-flortaucipir binding in choroid plexus: related to race and hip- pocampus signal. J. Alzheimers Dis. 62, 1691–1702.

Lemoine, L., Leuzy, A., Chiotis, K., Rodriguez-Vieitez, E., and Nordberg, A. (2018). Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. Alzheimers Dement. (Amst.) 10, 232–236.

Leuzy, A., Smith, R., Ossenkoppele, R., Santillo, A., Borroni, E., Klein, G., Ohlsson, T., Jo¨ gi, J., Palmqvist, S., Mattsson-Carlgren, N., et al. (2020). Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disor- ders. JAMA Neurol. 77, 955–965.

Lowe, V.J., Curran, G., Fang, P., Liesinger, A.M., Josephs, K.A., Parisi, J.E., Kantarci, K., Boeve, B.F., Pandey, M.K., Bruinsma, T., et al. (2016). An autora- diographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol. Commun. 4, 58.

Maeda, J., Zhang, M.R., Okauchi, T., Ji, B., Ono, M., Hattori, S., Kumata, K., Iwata, N., Saido, T.C., Trojanowski, J.Q., et al. (2011). In vivo positron emission tomographic imaging of glial responses to amyloid-beta and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J. Neurosci. 31, 4720–4730.

Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., and Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713.

Maruyama, M., Shimada, H., Suhara, T., Shinotoh, H., Ji, B., Maeda, J., Zhang, M.R., Trojanowski, J.Q., Lee, V.M., Ono, M., et al. (2013). Imaging of tau pa- thology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79, 1094–1108.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.

Mishra, S.K., and Kocˇa, J. (2018). Assessing the performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA approaches on protein/carbohydrate com- plexes: effect of implicit solvent models, QM methods, and entropic contribu- tions. J. Phys. Chem. B 122, 8113–8121.

Murugan, N.A., Nordberg, A., and A˚ gren, H. (2018). Different positron emission tomography tau tracers bind to multiple binding sites on the tau fibril: insight from computational modeling. ACS Chem. Neurosci. 9, 1757–1767.

Nagae, M., Mishra, S.K., Hanashima, S., Tateno, H., and Yamaguchi, Y. (2017). Distinct roles for each N-glycan branch interacting with mannose-binding type Jacalin-related lectins Orysata and Calsepa. Glycobiology 27, 1120–1133.

Narasimhan, S., Guo, J.L., Changolkar, L., Stieber, A., McBride, J.D., Silva, L.V., He, Z., Zhang, B., Gathagan, R.J., Trojanowski, J.Q., and Lee, V.M.Y. (2017). Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J. Neurosci. 37, 11406–11423.

Ng, K.P., Pascoal, T.A., Mathotaarachchi, S., Therriault, J., Kang, M.S., Shin, M., Guiot, M.C., Guo, Q., Harada, R., Comley, R.A., et al. (2017). Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res. Ther. 9, 25.

Ni, R., Ji, B., Ono, M., Sahara, N., Zhang, M.R., Aoki, I., Nordberg, A., Suhara, T., and Higuchi, M. (2018). Comparative in vitro and in vivo quantifications of pathologic tau deposits and their association with neurodegeneration in tau- opathy mouse models. J. Nucl. Med. 59, 960–966.

Okamoto, Y. (2004). Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J. Mol. Graph. Model. 22, 425–439.

Ono, M., Sahara, N., Kumata, K., Ji, B., Ni, R., Koga, S., Dickson, D.W., Trojanowski, J.Q., Lee, V.M., Yoshida, M., et al. (2017). Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauo- pathies. Brain 140, 764–780.

Pascoal, T.A., Shin, M., Kang, M.S., Chamoun, M., Chartrand, D., Mathotaarachchi, S., Bennacef, I., Therriault, J., Ng, K.P., Hopewell, R., et al. (2018). In vivo quantification of neurofibrillary tangles with [18F]MK- 6240. Alzheimers Res. Ther. 10, 74.

Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., and Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308.

Rabinovici, G.D., and Miller, B.L. (2010). Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 24, 375–398.

Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., van Swieten, J.C., Seelaar, H., Dopper, E.G., Onyike, C.U., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477.

Robinson, J.L., Geser, F., Corrada, M.M., Berlau, D.J., Arnold, S.E., Lee, V.M., Kawas, C.H., and Trojanowski, J.Q. (2011). Neocortical and hippocampal am- yloid-b and tau measures associate with dementia in the oldest-old. Brain 134, 3708–3715.

Robinson, J.L., Corrada, M.M., Kovacs, G.G., Dominique, M., Caswell, C., Xie, S.X., Lee, V.M., Kawas, C.H., and Trojanowski, J.Q. (2018). Non-Alzheimer’s contributions to dementia and cognitive resilience in The 90+ Study. Acta Neuropathol. 136, 377–388.

Sahara, N., Perez, P.D., Lin, W.L., Dickson, D.W., Ren, Y., Zeng, H., Lewis, J., and Febo, M. (2014). Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study. Neurobiol. Aging 35, 1364–1374.

Santacruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., et al. (2005). Tau sup- pression in a neurodegenerative mouse model improves memory function. Science 309, 476–481.

Scho¨ ll, M., Lockhart, S.N., Schonhaut, D.R., O’Neil, J.P., Janabi, M., Ossenkoppele, R., Baker, S.L., Vogel, J.W., Faria, J., Schwimmer, H.D., et al. (2016). PET imaging of tau deposition in the aging human brain. Neuron 89, 971–982.

Schonhaut, D.R., McMillan, C.T., Spina, S., Dickerson, B.C., Siderowf, A., Devous, M.D., Sr., Tsai, R., Winer, J., Russell, D.S., Litvan, I., et al. (2017). 18 F-flortaucipir tau positron emission tomography distinguishes established pro- gressive supranuclear palsy from controls and Parkinson disease: A multi- center study. Ann. Neurol. 82, 622–634.

Shimada, H., Kitamura, S., Shinotoh, H., Endo, H., Niwa, F., Hirano, S., Kimura, Y., Zhang, M.R., Kuwabara, S., Suhara, T., and Higuchi, M. (2016). Association between Ab and tau accumulations and their influence on clinical features in aging and Alzheimer’s disease spectrum brains: A [11C]PBB3-PET study. Alzheimers Dement. (Amst.) 6, 11–20.

Shoeibi, A., Olfati, N., and Litvan, I. (2018). Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin. Investig. Drugs 27, 349–361.

Soto, C., and Pritzkow, S. (2018). Protein misfolding, aggregation, and confor- mational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340.

Spillantini, M.G., and Goedert, M. (2013). Tau pathology and neurodegenera- tion. Lancet Neurol. 12, 609–622.

Takahata, K., Kimura, Y., Sahara, N., Koga, S., Shimada, H., Ichise, M., Saito, F., Moriguchi, S., Kitamura, S., Kubota, M., et al. (2019). PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain 142, 3265–3279.

Takeda, T., Uchihara, T., Arai, N., Mizutani, T., and Iwata, M. (2009). Progression of hippocampal degeneration in amyotrophic lateral sclerosis with or without memory impairment: distinction from Alzheimer disease. Acta Neuropathol. 117, 35–44.

Takei, M., Kida, T., and Suzuki, K. (2001). Sensitive measurement of positron emitters eluted from HPLC. Appl. Radiat. Isot. 55, 229–234.

Thal, D.R., Ru€b, U., Orantes, M., and Braak, H. (2002). Phases of A beta-depo- sition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800.

Tomita, Y., Kubis, N., Calando, Y., Tran Dinh, A., Me´ ric, P., Seylaz, J., and Pinard, E. (2005). Long-term in vivo investigation of mouse cerebral microcir- culation by fluorescence confocal microscopy in the area of focal ischemia. J. Cereb. Blood Flow Metab. 25, 858–867.

Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and ac- curacy of docking with a new scoring function, efficient optimization, and mul- tithreading. J. Comput. Chem. 31, 455–461.

Vermeiren, C., Motte, P., Viot, D., Mairet-Coello, G., Courade, J.P., Citron, M., Mercier, J., Hannestad, J., and Gillard, M. (2018). The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and mono- amine oxidases. Mov. Disord. 33, 273–281.

Walker, L.C., and Jucker, M. (2015). Neurodegenerative diseases: expanding the prion concept. Annu. Rev. Neurosci. 38, 87–103.

Wang, R., Lai, L., and Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16, 11–26.

Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174.

Williams, D.R., and Lees, A.J. (2009). Progressive supranuclear palsy: clinico- pathological concepts and diagnostic challenges. Lancet Neurol. 8, 270–279.

Williams, D.R., Holton, J.L., Strand, C., Pittman, A., de Silva, R., Lees, A.J., and Revesz, T. (2007). Pathological tau burden and distribution distinguishes pro- gressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130, 1566–1576.

Yamane, T., Ishii, K., Sakata, M., Ikari, Y., Nishio, T., Ishii, K., Kato, T., Ito, K., and Senda, M.; J-ADNI Study Group (2017). Inter-rater variability of visual interpretation and comparison with quantitative evaluation of 11C-PiB PET am- yloid images of the Japanese Alzheimer’s Disease Neuroimaging Initiative (J- ADNI) multicenter study. Eur. J. Nucl. Med. Mol. Imaging 44, 850–857.

Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S.M., Iwata, N., Saido, T.C., Maeda, J., Suhara, T., Trojanowski, J.Q., and Lee, V.M. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351.

Zhang, W., Tarutani, A., Newell, K.L., Murzin, A.G., Matsubara, T., Falcon, B., Vidal, R., Garringer, H.J., Shi, Y., Ikeuchi, T., et al. (2020). Novel tau filament fold in corticobasal degeneration. Nature 580, 283–287.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る