リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermal degradation reactivity of cellulose and hemicellulose in Japanese cedar and Japanese beech wood cell walls」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermal degradation reactivity of cellulose and hemicellulose in Japanese cedar and Japanese beech wood cell walls

Wang, Jiawei 京都大学 DOI:10.14989/doctor.k23395

2021.05.24

概要

本論文は、スギ(針葉樹)とブナ(広葉樹)の細胞壁中でのセルロースとヘミセルロース( キシランとグルコマンナン)の熱分解反応性について検討したものであり、7 章からなっている。

第 1 章は序論であり、木材の構成成分、細胞壁構造及びバイオマスの熱化学変換、既往の研究をまとめ、研究の目的及び意義を述べている。

第 2 章では、ヘミセルロースの一種であるキシランに結合するウロン酸基の熱分解への影響について市販のキシランを用いて検討した。市販のキシラン中のウロン酸基はナトリウム(Na)塩として存在しており、脱塩処理により酸型のウロン酸基を含む試料を調製し、両者の熱分解反応性を比較・検討した。熱分解反応性の評価については、熱重量(TG)分析を行うとともに、TG 分析と同じ加熱速度(10℃/分)で一定温度にまで昇温加熱し、残渣中に含まれるキシラン量を加水分解性糖として定量評価することで、キシラン中のキシロース単位の熱分解挙動を調べた。このようなアプローチにより、TG 分析における重量減少挙動をキシランの熱分解と併せて議論することが可能である。検討の結果、ウロン酸及びその Na塩がそれぞれ酸及び塩基触媒として作用することで、キシロース単位の熱分解が促進されることが明らかになった。本結果は、熱分解-ガスクロマトグラフ/質量分析(Py-GC/MS)による生成物組成の違いからも支持された。また、ウロン酸基の作用が、木材細胞壁中での多糖成分の熱分解反応性を調べる上での一つの着眼点となり得ることが提示された。

第 3 章では、断面の一辺が 10 nm 程度の結晶性のセルロースミクロフィブリルを非晶性のマトリックス(ヘミセルロースとリグニン) が取り囲むナノ複合である木材細胞壁中でのヘミセルロースとセルロースの熱分解反応性について検討した。スギ(針葉樹)とブナ(広葉樹)を選定し、単離ヘミセルロース及び綿セルロースと比較・検討した結果、いずれの樹種においても単離物では高い反応性を示すキシランが木材中では安定であり、逆にグルコマンナンの反応性がブナで著しく高いなど、細胞壁中ではヘミセルロースの反応性が大きく変化しており、その影響がスギとブナで異なることを初めて明らかにした。また、スギとブナはそれぞれ針葉樹及び広葉樹に特徴的な TG曲線を示したが、このような相違がこれまで信じられてきたヘミセルロースによるものではなく、セルロースの反応性の違いに起因することを明らかにした。すなわち、ブナではヘミセルロースとセルロースの熱分解が異なる温度域で独立して起こるのに対し、スギでは両者の熱分解が同期して進行する傾向があることが明らかになった。

第 4 章では、ウロン酸基を塩型から酸型に変化させた際に、近傍に存在する多糖成分の熱分解反応性が変化することを利用して、木材細胞壁中でのウロン酸基の存在位置について検討した。その結果、樹種によりその分布は異なり、ウロン酸基が、ブナではキシランとグルコマンナンの近傍に、一方スギではグルコマンナンとセルロースの近傍に存在していることが示唆された。従来、針葉樹ではセルロースミクロフィブリルの表面にグルコマンナンが配置する細胞壁モデルが提案されてきたが、本実験結果より、キシラン、グルコマンナン、セルロースの 3 者が密接に凝集する新たな針葉樹の細胞壁モデルが提案された。

第 5 章では、リグニンを除去したホロセルロースを木材より調製し、その熱分解挙動を未処理木材と比較・検討することで、リグニンの影響について検討した。その結果、いずれの木材においても、リグニンを除去することでヘミセルロースの熱分解反応性が単離物と同レベルに変化することがわかり、リグニンの物理的な拘束作用が細胞壁中での多糖類の特異な配置を固定し、ヘミセルロースの熱分解反応性を決めている機構が示唆された。また、脱リグニンにより、木材中のセルロースが綿のセルロースよりも低温で熱分解するようになり、その熱分解が低温モードと高温モードの2つの温度域で起こるようになることが判明した。これについては、セルロースミクロフィブリルがマトリックスの影響を受けて熱分解するようになるためと考えられた。

第 6 章では、ボールミル処理した木材の熱分解挙動について検討した結果、ボールミル処理によりリグニン中のエーテル構造が開裂し、ヘミセルロースとセルロースの熱分解反応性が高まることが明らかになった。また、セルロースが 2 つの温度域で熱分解するようになったが、これらの結果は、リグニンによる物理的な拘束から解放されたためと考えられた。一方、ボールミル処理木材では、グルコマンナンの反応性が向上し、キシランと同様の温度域で熱分解されるようになることがわかり、ボールミル処理によりウロン酸基がマトリックス中で均一に分布するようになることでその影響がグルコマンナンにも及ぶようになったためと考えられた。

第8章(結論)では、本研究で得られた成果についてまとめている。

この論文で使われている画像

参考文献

Adler, E. (1977). Lignin chemistry-past, present and future. Wood Science and Technology, 11(3), 169–218.

Åkerholm, M., & Salmén, L. (2001). Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer, 42(3), 963–969.

Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews. 16(3), 5105-5109.

Alén, R., Kuoppala, E., & Oesch, P. (1996). Formation of the main degradation compound groups from wood and its components during pyrolysis. Journal of Analytical and Applied Pyrolysis, 36(2), 137–148.

Asmadi, M., Kawamoto, H., & Saka, S. (2010). Pyrolysis reactions of Japanese cedar and Japanese beech woods in a closed ampoule reactor. Journal of Wood Science, 56(4), 319– 330.

Asmadi, M., Kawamoto, H., & Saka, S. (2011). Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins. Journal of Analytical and Applied Pyrolysis, 92(2), 417–425.

Asmadi, M., Kawamoto, H., & Saka, S. (2017). Characteristics of softwood and hardwood pyrolysis in an ampoule reactor. Journal of Analytical and Applied Pyrolysis, 124, 523–535.

Awano, T., Takabe, K., & Fujita, M. (2001). Xylan and lignin deposition on the secondary wall of Fagus crenata fibers. Progress in Biotechnology, 18, 137–142.

Aznar, M. P., Corella, J., Delgado, J., & Lahoz, J. (1993). Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming Catalysts. Industrial and Engineering Chemistry Research, 32(1), 1–10.

Balakshin, M., Capanema, E., & Berlin, A. (2014). Isolation and analysis of lignin- carbohydrate complexes preparations with traditional and advanced methods: A review. Studies in Natural Products Chemistry. 42, 83-115.

Balakshin, M., Capanema, E., Gracz, H., Chang, H. min, & Jameel, H. (2011). Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta, 233(6), 1097–1110.

Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6506–6511.

Bertaud, F., Sundberg, A., & Holmbom, B. (2002). Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydrate Polymers, 48(3), 319–324.

Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology. 237, 57-63.

Bleton, J., Mejanelle, P., Sansoulet, J., Goursaud, S., & Tchapla, A. (1996). Characterization of neutral sugars and uronic acids after methanolysis and trimethylsilylation for recognition of plant gums. Journal of Chromatography A, 720(1– 2), 27–49.

Bond, Brian; Hamner, P. (2002). Wood identification for hardwood and softwood Species native to Tennessee. Agricultural Extension Service. pp. 15.

Bradbury, A. G. W., Sakai, Y., & Shafizadeh, F. (1979). A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science, 23(11), 3271–3280.

Branca, C., Di Blasi, C., & Galgano, A. (2016). Chemical characterization of volatile products of biomass pyrolysis under significant reaction-induced overheating. Journal of Analytical and Applied Pyrolysis, 119, 8–17.

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.

Busse-Wicher, M., Gomes, T., Tryfona, T., Nikolovski, N., Stott, K., Grantham, N. J., Bolam DN, Skaf M., & Dupree, P. (2014). The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant Journal, 79(3), 492–506.

Busse-Wicher, M., Li, A., Silveira, R. L., Pereira, C. S., Tryfona, T., Gomes, T. C. F., Skaf M.S., & Dupree, P. (2016). Evolution of xylan substitution patterns in gymnosperms and angiosperms: Implications for xylan interaction with cellulose. Plant Physiology, 171(4), 2418–2431.

Caffall, K. H., & Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344(14), 1879–1900.

Candelier, K., Chaouch, M., Dumaray, S., Pétrissans, A., Pétrissans, M., & Gérardin, P. (2011). Utilization of thermodesorption coupled to GC-MS to study stability of different wood species to thermodegradation. Journal of Analytical and Applied Pyrolysis. 92(2), 376-383.

Cavalier, D. M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., Zabotina, O.A., Hahn, M. G., Burgert, I., Raikhel, N. V., & Keegstra, K. (2008). Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell, 20(6), 1519–1537.

Clawson, C. C., & Clawson, C. C. (1999). Speculations on the nature of mathematics. Mathematical Sorcery, 2, 281–285.

Collard, F. X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews. 38, 594-608.

Cosgrove, D. J., & Jarvis, M. C. (2012). Comparative structure and biomechanics of plant primary and secondary cell walls. Frontiers in Plant Science. 3, 204.

Crestini, C., Melone, F., Sette, M., & Saladino, R. (2011). Milled wood lignin: a linear oligomer. Biomacromolecules, 12(11), 3928–3935.

Dammström, S., Salmén, L., & Gatenholm, P. (2009). On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources, 4(1), 3–14.

DeGroot, W. F. (1985). Preliminary investigation of the association of inorganic cations with carboxylic acid groups in wood. Carbohydrate Research, 142(1), 172–178.

Du, X., Gellerstedt, G., & Li, J. (2013). Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant Journal, 74(2), 328–338.

Du, X., Pérez-Boada, M., Fernández, C., Rencoret, J., del Río, J. C., Jiménez-Barbero, J., Li, J., Gutiérrez, A, & Martínez, A. T. (2014). Analysis of lignin–carbohydrate and lignin–lignin linkages after hydrolase treatment of xylan–lignin, glucomannan–lignin and glucan–lignin complexes from spruce wood. Planta, 239(5), 1079–1090.

Eom, I. Y., Kim, J. Y., Kim, T. S., Lee, S. M., Choi, D., Choi, I. G., & Choi, J. W. (2012). Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresource Technology, 104, 687–694.

Eom, I. Y., Kim, K. H., Kim, J. Y., Lee, S. M., Yeo, H. M., Choi, I. G., & Choi, J. W.(2011). Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresource Technology, 102(3), 3437–3444.

Evans, R. J., & Milne, T. A. (1987). Molecular characterization of the pyrolysis of biomass. Energy and Fuels, 1(2), 123–137.

Fengel, D., & Wegener, G. (1979). Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, pp 145–158.

Fisher, T., Hajaligol, M., Waymack, B., & Kellogg, D. (2002). Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis, 62(2), 331–349.

Forziati, F. H., Stone, W. K., Rowen, J. W., & Appel, W. D. (1950). Cotton powder for infrared transmission measurements. Journal of Research of the National Bureau of Standards, 45(2), 109-113.

Fujimoto, A., Matsumoto, Y., Chang, H. M., & Meshitsuka, G. (2005). Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. Journal of Wood Science. 51, 89-91.

Gabrielii, I., Gatenholm, P., Glasser, W. G., Jain, R. K., & Kenne, L. (2000). Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydrate Polymers, 43(4), 367–374.

Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: a review. Bioresource Technology, 101(13), 4775–4800.

Giudicianni, P., Gargiulo, V., Grottola, C. M., Alfè, M., & Ragucci, R. (2018). Effect of alkali metal ions presence on the products of xylan steam assisted slow pyrolysis. Fuel, 216, 36–43.

Gralén, N., & Svedberg, T. (1943). Molecular weight of native cellulose. Nature. 152, 625.

HA, Y. W., & Tomas, R. L. (1988). Simultaneous determination of neutral sugars and uronic acids in hydrocolloids. Journal of Food Science, 53(2), 574–577.

Haraguchi, T. (1985). Hemicellulose. In Wood Chemistry (3rd ed., pp. 84–95). Tokyo: Buneido-shuppan.

Harris, J. F., Baker, A. J., Conner, A. H., Jeffries, T. W., Minor, J. L., Pettersen, R. C., Scott, R. W., Springer, E., I., Wegner, T., H., Zerbe, J. I. (1985). Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals. Gen. Tech. Rep. FPL-45. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 1985. 73 P., 45, 1–73.

Hideno, A. (2016). Comparison of the thermal degradation properties of crystalline and amorphous cellulose, as well as treated lignocellulosic biomass. BioResources, 11(3), 6309–6319.

Hideno, A., Kawashima, A., Anzoua, K. G., & Yamada, T. (2013). Comparison of the enzymatic digestibility of physically and chemically pretreated selected line of diploid- Miscanthus sinensis Shiozuka and triploid-M.×giganteus. Bioresource Technology, 146, 393–399.

Holtman, K. M., Chang, H. M., Jameel, H., & Kadla, J. F. (2003). Elucidation of lignin structure through degradative methods: Comparison of modified DFRC and thioacidolysis. Journal of Agricultural and Food Chemistry, 51(12), 3535–3540.

Hosoya, T., Kawamoto, H., & Saka, S. (2007a). Cellulose-hemicellulose and cellulose- lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis, 80(1), 118–125.

Hosoya, T., Kawamoto, H., & Saka, S. (2007b). Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. Journal of Analytical and Applied Pyrolysis, 78(2), 328–336.

Hosoya, Takashi, Kawamoto, H., & Saka, S. (2007). Influence of inorganic matter on wood pyrolysis at gasification temperature. Journal of Wood Science, 53(4), 351–357.

Ikeda, T., Holtman, K., Kadla, J. F., Chang, H. M., & Jameel, H. (2002). Studies on the effect of ball milling on lignin structure using a modified DFRC method. Journal of Agricultural and Food Chemistry. 50(1), 129-135.

International Monetary Fund (IMF). (2019). World Economic Outlook: Global Manufacturing Downturn, Rising Trade Barriers. International Monetary Fund.

International Energy Agency (IEA). (2019). Global Energy & CO2 Status Report: The Latest Trends in Energy and Emissions in 2018. Iea.

Jacobs, A., & Dahlman, O. (2001). Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption lonization time-of-flight mass spectrometry. Biomacromolecules, 2(3), 894–905.

Jakab, E., Faix, O., Till, F., & Székely, T. (1995). Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. Journal of Analytical and Applied Pyrolysis. 35(2), 167-179.

Jiang, J., Wang, J., Zhang, X., & Wolcott, M. (2017). Assessing multi-scale deconstruction of wood cell wall subjected to mechanical milling for enhancing enzymatic hydrolysis. Industrial Crops and Products, 109, 498–508.

Jin, Z., Katsumata, K. S., Lam, T. B. T., & Iiyama, K. (2006). Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers, 83(2), 103–110.

Kamel, M. Y., & Hamed, R. R. (1975). Aerobacter aerogenes PRL R3 urease. Purification and properties. Acta Biologica et Medica Germanica, 34(6), 971–979.

Kan, T., Strezov, V., & Evans, T. (2016). Effect of the heating rate on the thermochemical behavior and biofuel properties of sewage sludge pyrolysis. Energy and Fuels, 30(3), 1564–1570.

Katō, K. (1967). Pyrolysis of cellulose. Agricultural and Biological Chemistry, 31(6), 657–663.

Kawamoto, H., & Saka, S. (2006). Heterogeneity in cellulose pyrolysis indicated from the pyrolysis in sulfolane. Journal of Analytical and Applied Pyrolysis, 76(1–2), 280–284.

Kawamoto, H., (2016). Review of reactions and molecular mechanisms in cellulose pyrolysis. Current Organic Chemistry, 20(23), 2444–2457.

Kawamoto, H., (2017). Lignin pyrolysis reactions. Journal of Wood Science. 63, 117-132.

Kawamoto, H., Yamamoto, D., & Saka, S. (2008). Influence of neutral inorganic chlorides on primary and secondary char formation from cellulose. Journal of Wood Science, 54(3), 242–246.

Kim, D. Y., Nishiyama, Y., Wada, M., Kuga, S., & Okano, T. (2001). Thermal decomposition of cellulose crystallites in wood. Holzforschung, 55(5), 521–524.

Kim, H. S., Kim, S., Kim, H. J., & Yang, H. S. (2006). Thermal properties of bio-flour- filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1–2), 181–188.

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality. 41(4), 990-1000.

Kumagai, A., & Endo, T. (2018). Comparison of the surface constitutions of hemicelluloses on lignocellulosic nanofibers prepared from softwood and hardwood. Cellulose, 25(7), 3885–3897.

Lange, J. P. (2007). Lignocellulose conversion: An introduction to chemistry, process and economics. Biofuels, Bioproducts and Biorefining. 1, 39-48.

Lawoko, M., Henriksson, G., & Gellerstedt, G. (2005). Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules, 6(6), 3467–3473.

Le Brech, Y., Jia, L., Cissé, S., Mauviel, G., Brosse, N., & Dufour, A. (2016). Mechanisms of biomass pyrolysis studied by combining a fixed bed reactor with advanced gas analysis. Journal of Analytical and Applied Pyrolysis, 117, 334–346.

Li, J., Kisara, K., Danielsson, S., Lindström, M. E., & Gellerstedt, G. (2007). An improved methodology for the quantification of uronic acid units in xylans and other polysaccharides. Carbohydrate Research, 342(11), 1442–1449.

Ling, Z., Wang, T., Makarem, M., Santiago Cintrón, M., Cheng, H. N., Kang, X., Bacher, M., Potthast, A., Rosenau, T., King, H., Delhom, C., D., Nam, S., Edwards., J. V., Kim, S., H., Xu, F., & French, A. D. (2019). Effects of ball milling on the structure of cotton cellulose. Cellulose. 26, 305-328.

Lv, G., & Wu, S. (2012). Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. Journal of Analytical and Applied Pyrolysis. 97, 11-18.

Maeda, Y., Awano, T., Takabe, K., & Fujita, M. (2000). Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma, 213(3–4), 148–156.

Matsuoka, S., Kawamoto, H., & Saka, S. (2011). Reducing end-group of cellulose as a reactive site for thermal discoloration. Polymer Degradation and Stability, 96(7), 1242– 1247.

Matsuoka, S., Kawamoto, H., & Saka, S. (2014). What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. Journal of Analytical and Applied Pyrolysis, 106, 138–146.

Mattonai, M., Pawcenis, D., del Seppia, S., Łojewska, J., & Ribechini, E. (2018). Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresource Technology, 270, 270–277.

McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46.

Meier, H., & Vangedal, S. (1961). Isolation and Characterisation of an Acetylated Glucomannan from Pine (Pinus silvestris L.). Acta Chemica Scandinavica, 15, 1381– 1385.

Mejanelle, P., Bleton, J., Tchapla, A., & Goursaud, S. (2002). Chapter 24 Gas chromatography-mass spectrometric analysis of monosaccharides after methanolysis and trimethylsilylation. Potential for the characterization of substances of vegetal origin: Application to the study of museum objects. Journal of Chromatography Library, 66(C), 845–902.

Mian, A. J., & Timell, T. E. (1960). Isolation and Properties of a Glucomannan From the Wood of Red Maple ( Acer Rubrum L.) . Canadian Journal of Chemistry, 38(9), 1511– 1517.

Mikkelsen, D., Flanagan, B. M., Wilson, S. M., Bacic, A., & Gidley, M. J. (2015). Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks. Biomacromolecules, 16(4), 1232–1239.

Miyazaki, K. (1975). A new compound, 4-hydroxy-5,6-dihydro-2H-pyran-2-one, from xylan on heating. Mokuzai Gakkaishi, 21,120–121.

Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology. 11(3), 266-277.

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews. 40, 3941-3994.

Mukarakate, C., Mittal, A., Ciesielski, P. N., Budhi, S., Thompson, L., Iisa, K., Nimlos, M., R., & Donohoe, B. S. (2016). Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis. ACS Sustainable Chemistry and Engineering, 4(9), 4662–4674.

Müller-Hagedorn, M., Bockhorn, H., Krebs, L., & Müller, U. (2003). A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis, 68–69, 231–249.

Nair, S. S., & Yan, N. (2015). Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose, 22(5), 3137–3150.

Nakamura, T., Kawamoto, H., & Saka, S. (2008). Pyrolysis behavior of Japanese cedar wood lignin studied with various model dimers. Journal of Analytical and Applied Pyrolysis. 81(2), 173-182.

Nieduszynski, I., & Marchessault, R. H. (1971). Structure of β-d-(1→4′) xylan hydrate. Nature, 11, 1335–1344.

Nishiyama, Y. (2009). Structure and properties of the cellulose microfibril. Journal of Wood Science. 55, 241-249.

Nomura, T., Kawamoto, H., & Saka, S. (2017). Pyrolysis of cellulose in aromatic solvents: Reactivity, product yield, and char morphology. Journal of Analytical and Applied Pyrolysis, 126, 209-217.

Norgren, M., & Edlund, H. (2014). Lignin: recent advances and emerging applications. Current Opinion in Colloid and Interface Science. 19(5), 409-416.

Obst, J. R., & Kirk, T. K. (1988). Isolation of lignin. Methods in Enzymology, 161(C), 3– 12.

O’Sullivan, A. C. (1997). Cellulose: the structure slowly unravels. Cellulose, 4(3), 173– 207.

Ohnishi, A., Kato, K., & Takagi, E. (1977). Pyrolytic formation of 3-hydroxy-2-penteno- 1,5-lactone from xylan, xylo-oligosaccharides, and methyl xylopyranosides. Carbohydrate Research, 58(2), 387–395.

Pandey, M. P., & Kim, C. S. (2011). Lignin depolymerization and conversion: a review of thermochemical methods. Chemical Engineering and Technology. 34(1), 29-41.

Patwardhan, P. R., Brown, R. C., & Shanks, B. H. (2011). Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem, 4(5), 636–643.

Patwardhan, P. R., Dalluge, D. L., Shanks, B. H., & Brown, R. C. (2011). Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresource Technology, 102(8), 5265–5269.

Patwardhan, P. R., Satrio, J. A., Brown, R. C., & Shanks, B. H. (2009). Product distribution from fast pyrolysis of glucose-based carbohydrates. Journal of Analytical and Applied Pyrolysis, 86(2), 323–330.

Peng, Y., & Wu, S. (2010). The structural and thermal characteristics of wheat straw hemicellulose. Journal of Analytical and Applied Pyrolysis. 88(2), 134-139.

Pereira, C. S., Silveira, R. L., Dupree, P., & Skaf, M. S. (2017). Effects of xylan side- chain substitutions on xylan-cellulose interactions and implications for thermal pretreatment of cellulosic biomass. Biomacromolecules, 18(4), 1311–1321.

Pettersen, R. C. (1984). The chemical composition of wood. The Chemistry of Solid wood, 57–126.

Piras, C. C., Fernández-Prieto, S., & De Borggraeve, W. M. (2019). Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Advances. 1, 937-947.

Plomion, C., Leprovost, G., & Stokes, A. (2001). Wood formation in trees. Plant Physiology. 127, 1513-1523.

Poletto, M. (2016). Thermal degradation and morphological aspects of four wood species used in lumber industry. Revista Árvore, 40(5), 941–948.

Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148–153.

Ponder, G. R., & Richards, G. N. (1991). Thermal synthesis and pyrolysis of a xylan. Carbohydrate Research, 218(C), 143–155.

Pouwels, A. D., Tom, A., Eijkel, G. B., & Boon, J. J. (1987). Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis, 11, 417–436.

Puig-Arnavat, M., Bruno, J. C., & Coronas, A. (2010). Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews. 14(9), 2841-2851.

Rabemanolontsoa, H., & Saka, S. (2013). Comparative study on chemical composition of various biomass species. RSC Advances, 3(12), 3946–3956.

Radotić, K., Mićić, M., & Jeremić, M. (2005). New insights into the structural organization of the plant polymer lignin. In Annals of the New York Academy of Sciences, 1048, 215-229.

Räisänen, U., Pitkänen, I., Halttunen, H., & Hurtta, M. (2003). Formation of the main degradation compounds from arabinose, xylose, mannose and arabinitol during pyrolysis. Journal of Thermal Analysis and Calorimetry, 72(2), 481–488.

Ralph, J., & Hatfield, R. D. (1991). Pyrolysis-gc-ms characterization of forage materials. Journal of Agricultural and Food Chemistry, 39(8), 1426–1437.

Reis, D., & Vian, B. (2004). Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. Comptes Rendus - Biologies, 327(9–10), 785–790.

Reis, D., Vian, B., & Roland, J. C. (1994). Cellulose-glucuronoxylans and plant cell wall structure. Micron, 25(2), 171–187.

Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57, 929–967.

Rolando, C., Monties, B., & Lapierre, C. (1992). Thioacidolysis, In: Methods in lignin chemistry, Springer Series in Wood Science, pp. 335-349.

Ruiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., & Mendívil, M. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews. 18, 174-183.

Saha, B. C. (2003). Hemicellulose bioconversion. In Journal of Industrial Microbiology and Biotechnology. 30(5), 279-291.

Saka, S., & Mimori, R. (1994). The distribution of inorganic constituents in white birch wood as determined by SEM-EDXA. Mokuzai Gakkaishi, 40, 88–94.

Salmén, L., & Burgert, I. (2009). Cell wall features with regard to mechanical performance. A review. COST Action E35 2004-2008: Wood machining - Micromechanics and fracture. Holzforschung, 63(2), 121–129.

Sanchez-Silva, L., López-González, D., Villaseñor, J., Sánchez, P., & Valverde, J. L. (2012). Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, 163–172.

Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263–289.

Schill, S. R. (2013). IEA Task40: Biomass provides 10 percent of global energy use. BIOMASS Magazine, 18–21.

Schwanninger, M., Rodrigues, J. C., Pereira, H., & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23–40.

Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal, 29(10), 786–794.

Shafizadeh, F., McGinnis, G. D., & Philpot, C. W. (1972). Thermal degradation of xylan and related model compounds. Carbohydrate Research, 25(1), 23–33.

Shen, D. K., & Gu, S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology, 100(24), 6496–6504.

Shen, D. K., Gu, S., & Bridgwater, A. V. (2010a). Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. Journal of Analytical and Applied Pyrolysis. 87(2), 199-206.

Shen, D. K., Gu, S., & Bridgwater, A. V. (2010b). The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydrate Polymers, 82(1), 39–45.

Shen, D. K., Gu, S., Luo, K. H., Wang, S. R., & Fang, M. X. (2010). The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource Technology, 101(15), 6136-6146.

Shimada, N., Kawamoto, H., & Saka, S. (2008). Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 81(1), 80–87.

Šimkovic, I., Varhegyi, G., Antal, M. J., Ebringerová, A., Szekely, T., & Szabo, P. (1988). Thermogravimetric/mass spectrometric characterization of the thermal decomposition of (4‐O‐methyl‐D‐glucurono)‐D‐xylan. Journal of Applied Polymer Science, 36(3), 721– 728.

Simmons, T. J., Mortimer, J. C., Bernardinelli, O. D., Pöppler, A. C., Brown, S. P., DeAzevedo, E. R., Dupree, R., & Dupree, P. (2016). Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications, 7, 1–9.

Sims, I. M., Craik, D. J., & Bacic, A. (1997). Structural characterisation of galactoglucomannan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydrate Research, 303(1), 79–92.

Sims, I. M., Munro, S. L. A., Currie, G., Craik, D., & Bacic, A. (1996). Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydrate Research, 293(2), 147–172.

Sipponen, M. H., Laakso, S., & Baumberger, S. (2014). Impact of ball milling on maize (Zea mays L.) stem structural components and on enzymatic hydrolysis of carbohydrates. Industrial Crops and Products, 61, 130–136.

Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 17, 459-494.

Sjöström, E., Janson, T., Haglund, P., & Enström, B. (1965). The acidic groups in wood and pulp as measured by ion exchange. Journal of Polymer Science Part C: Polymer Symposia, 11(1), 221–241.

Sundberg, A., Sundberg, K., Lillandt, C., & Holmbom, B. (1996). Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nordic Pulp and Paper Research Journal, 11(4), 216-219.

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.

Takahashi, N., & Koshijima, T. (1988a). Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Science and Technology, 22(3), 231–241.

Takahashi, N., & Koshijima, T. (1988b). Molecular properties of lignin-carbohydrate complexes from beech (Fagus crenata) and pine (Pinus densiflora) woods. Wood Science and Technology, 22(2), 177–189.

Tarasov, D., Leitch, M., & Fatehi, P. (2018). Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnology for Biofuels. BioMed Central. 11, 269.

Terashima, N., Kitano, K., Kojima, M., Yoshida, M., Yamamoto, H., & Westermark, U. (2009). Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. Journal of Wood Science, 55(6), 409–416.

Terrett, O. M., Lyczakowski, J. J., Yu, L., Iuga, D., Franks, W. T., Brown, S. P., Dupree, R., & Dupree, P. (2019). Molecular architecture of softwood revealed by solid-state NMR. Nature Communications, 10, 4978.

Thakur, B. R., Singh, R. K., & Handa, A. K. (1997). Chemistry and uses of pectin - a review. Critical Reviews in Food Science and Nutrition, 37(1), 47–73.

Thomas, H. (2015). Cellulose: structure and properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials in Polymer Science, Springer, Cham, pp. 1-52.

Timell, T. E. (1961). Isolation of galactoglucomannans from the wood of gymnosperms. Tappi, 44, 88–96.

Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology, 1(1), 45–70.

Tsuchiya, Y., & Sumi, K. (1970). Thermal decomposition products of cellulose. Journal of Applied Polymer Science, 14(8), 2003–2013.

Tyminski, A., & Timell, T. E. (1960). The Constitution of a Glucomannan from White Spruce (Picea glauca). Journal of the American Chemical Society, 82(11), 2823–2827.

United Nations Development Programme. (2000). World Energy Assessment. Energy and the challenge of Sustainability. World Energy Assessment.

Vamvuka, D. (2011). Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-an overview. International Journal of Energy Research. 35, 835-862.

Varhegyi, G., Antal, M. J., Szekely, T., Till, F., Jakab, E., & Varhegyi, G. (1988). Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. Energy and Fuels, 2(3), 267–272.

Vian, B., Roland, J.-C., Reis, D., & Mosiniak, M. (2014). Distribution and possible morphogenetic role of the xylans within the secondary vessel wall of linden wood. IAWA Journal, 13(3), 269–282.

Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20(2), 263–275.

Wang, J., Asmadi, M., & Kawamoto, H. (2018). The effect of uronic acid moieties on xylan pyrolysis. Journal of Analytical and Applied Pyrolysis, 136, 215–221.

Wang, J., Minami, E., & Kawamoto, H. (2020). Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls. Journal of Wood Science, 66, 41.

Wang, J., Asmadi, M., Minami, E., & Kawamoto, H. (2021). Location of uronic acid group in Japanese cedar and Japanese beech wood cell walls as evaluated by the influences of minerals on thermal reactivity. Journal of Wood Science, 67, 3.

Wang, J., Asmadi, M., Minami, E., & Kawamoto, H. (2021). Effect of delignification on thermal degradation reactivities of hemicellulose and cellulose in wood cell walls. Journal of Wood Science, 67, 19.

Wang, S., Liang, T., Ru, B., & Guo, X. juan. (2013). Mechanism of xylan pyrolysis by Py-GC/MS. Chemical Research in Chinese Universities, 29(4), 782–787.

Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86.

Wang, S., Guo, X., Liang, T., Zhou, Y., & Luo, Z. (2012). Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresource Technology, 104, 722–728.

Wang, S., Ru, B., Lin, H., & Luo, Z. (2013). Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresource Technology, 143, 378–383.

Wang, S., Ru, B., Lin, H., & Sun, W. (2015). Pyrolysis behaviors of four O-acetyl- preserved hemicelluloses isolated from hardwoods and softwoods. Fuel, 150, 243–251.

Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., & Fransson, T. (2009). Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnology Advances. 27(5), 562-567.

Wang, Z., Cao, J., & Wang, J. (2009). Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. Journal of Analytical and Applied Pyrolysis. 84(2), 179-184.

Werner, K., Pommer, L., & Broström, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110(1), 130–137.

Wise, L. E., Murphy, M., & D’Addieco, A. A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper trade Journal, 122, 35-43.

Worasuwannarak, N., Sonobe, T., & Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis. 78(2), 265-271.

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.

Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D. H., & Liang, D. T. (2006). In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy and Fuels. 20(1), 388-393.

Huang Y., Indrarti, L., Azuma, J. I, & Okamura, K. (1992). Simultaneous determination of xylose and uronic acid in beech xylan by methanolysis. Mokuzai Gakkaishi, 38, 1167– 1171.

Yuan, T. Q., Sun, S. N., Xu, F., & Sun, R. C. (2011). Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. Journal of Agricultural and Food Chemistry, 59(19), 10604–10614.

Zhang, J, Choi, Y. S., Yoo, C. G., Kim, T. H., Brown, R. C., & Shanks, B. H. (2015). Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis. ACS Sustainable Chemistry and Engineering, 3(2), 293–301.

Zhang, J, Chen, T., Wu, J., & Wu, J. (2014). A novel Gaussian-DAEM-reaction model for the pyrolysis of cellulose, hemicellulose and lignin. RSC Advances, 4(34), 17513– 17520.

Zhou, H., Long, Y., Meng, A., Chen, S., Li, Q., & Zhang, Y. (2015). A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro- TGA. RSC Advances, 5(34), 26509–26516.

Zhou, X., Li, W., Mabon, R., & Broadbelt, L. J. (2017). A critical review on hemicellulose pyrolysis. Energy Technology, 5(1), 52–79.

Zhou, X., Li, W., Mabon, R., & Broadbelt, L. J. (2018). A mechanistic model of fast pyrolysis of hemicellulose. Energy and Environmental Science, 11(5), 1240–1260.

Zickler, G. A., Wagermaier, W., Funari, S. S., Burghammer, M., & Paris, O. (2007). In situ X-ray diffraction investigation of thermal decomposition of wood cellulose. Journal of Analytical and Applied Pyrolysis, 80(1), 134–140.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る