リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular mechanisms and control of cellulose carbonization for efficient production of levoglucosan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular mechanisms and control of cellulose carbonization for efficient production of levoglucosan

Nomura, Takashi 京都大学 DOI:10.14989/doctor.k23394

2021.05.24

概要

本論文は、セルロースの炭化機構解明及び炭化の制御によるレボグルコサンの高効率生産について研究した結果をまとめたものであり、8章からなっている。

第1章は序論であり、バイオマス変換技術としての熱分解の可能性と課題、既往の研究をまとめ、研究の目的及び意義を述べている。

第2章では、セルロースの重要な熱分解中間体であるレボグルコサン(LG、1,6-アンヒドロ-β-D-グルコピラノース)を熱分解反応に対して安定化する芳香族溶媒中におけるセルロースの熱分解について検討した。芳香族溶媒中では、セルロースの熱分解が著しく遅延するとともに、熱分解残渣から加水分解により未反応のセルロースを除去して得られる固体炭化物の収率も減少した。一方、LGと5-ヒドロキシメチルフルフラール(5-HMF)の収率が大きく向上しており、これらの2次熱分解が抑制されたことが示唆された。特に5-HMFと固体炭化物の収率の間には明確な負の相関が認められ、5-HMFがセルロースからの炭化物生成の中間体であることが示唆された。しかしながら、芳香族溶媒を用いて制御できるのはセルロースの変換率30%程度までであり、それ以上熱分解を進めると窒素雰囲気下での熱分解と同様に炭化物の生成が認められるようになることも判明した。その理由として、芳香族溶媒がアクセスできる部分がセルロースの30%程度であったためと考えられた。

第3章では、窒素雰囲気下及び芳香族溶媒中で熱分解したセルロース繊維断面を紫外線(UV)顕微鏡により観察した。熱分解すると紫外線を吸収しないセルロースが紫外線を吸収するようになり、その吸収が細胞壁内で均一に認められた。モデル化合物のUVスペクトル及び炭化物の熱分解-ガスクロマトグラフ/質量分析(Py-GC/MS分析)の結果より、このUV吸収が炭化物中のフラン環及びベンゼン環構造に起因することが示唆された。芳香族溶媒中での熱分解では、UV吸収率は均一に低下したことから、紫外線顕微鏡の分解能(280nm)レベルで芳香族溶媒は細胞壁内に均一に浸透し、炭化を抑制したことが示された。一方、芳香族溶媒による制御が変換率30%程度に留まったことから、280nmよりも小さなスケールでセルロース微結晶(断面の1辺30nm)間に芳香族溶媒がアクセス出来ない部分があり、そこで炭化が進行したものと考えられた。

第4章では、5-HMFからの炭化物生成挙動をセルロースの場合と比較して検討した。セルロースの熱分解において5-HMFと共存すると考えられる糖由来生成物のモデル化合物としてグリセリンを選定し、その存在下で5-HMFを280°Cで熱分解すると、セルロースの熱分解と同様にカルボキシル基、フェノール基(酸性基)及びベンゼン環構造を含む炭化物を生成した。これらの結果から、5-HMFがセルロース炭化のキー中間体であるという仮説が検証された。また、5-HMFが5員環構造を含み、セルロースから生成するためにはグルコース単位の開環構造を経る必要があることから、セルロース及びその熱分解中間体の還元末端が5-HMF及び固体炭化物の生成に繋がる部位であることが示唆された。

第5章では、5-HMFの特定の炭素を13Cでラベルした試料を調製し、その炭化物中のベンゼン環構造への13Cの取り込みを調べることで、5-HMFからのベンゼン環構造への変換経路について検討した。その結果、5-HMFから生成する炭化物中のベンゼン環構造の多くは5-HMFの6個の炭素から直接生成するのではなく、フラン環が一度分解し反応性フラグメントを生成した後に、これらが再編成されることでベンゼン環構造を形成することが判明した。一方、フェノール構造は例外であり、5-HMFの6個の炭素が形を変えることで直接生成することが明らかになった。

第6章では、より高温度域においてセルロースを一気に液状生成物へと変換できる急速熱分解条件について検討した。急速熱分解条件では、生成する液状中間体に対して芳香族溶媒がより効率的に作用できるのではと考えた。具体的には窒素気流化における赤外線加熱を用いたが、その理由は、赤外線を吸収しない窒素気流による揮発生成したLGの急冷を期待したためである。LGの2次熱分解による収率低下の回避は、セルロースからのLG生産における課題のひとつである。赤外線加熱では、照射面に生成する薄い炭化物層が赤外線を強く吸収して発熱することで、その近傍のセルロースが一気に熱分解していることが判明した。セルロース自体が赤外線により効率的には加熱されないことから、ごく薄い炭化物層近傍ででのみ熱分解が起こり、順次広がっていく機構が提案された。接触加熱ベースの他の急速熱分解法では、高温の状態を保つために、セルロースの微粉化が必要であるが、赤外線加熱では、大きな試料でも急速熱分解条件を達成できる点で有利であることが明らかになった。このような条件でのセルロースからのLG収率は最大52.7wt%に達した。さらに、還元性末端をブロックし、低温度域で進行する炭化反応を抑制することで、レボグルコサン収率を78.2wt%と大幅に向上させることに成功した。

第7章では、マイクロ波と固体酸を用いたLGのグルコースへの変換について検討した結果、グルコースが95.4%の収率で得られることを明らかにした。さらに、セルロースの急速熱分解物(LG,57.2g/L)から68.3g/Lのグルコース溶液が得られることも明らかにした。

第8章(結論)では、本研究で得られた成果についてまとめている。

参考文献

A. Pictet. (1918). On the transformation of levoglucoscine to dextrine. Helv. Chim. Acta, 1, 226–230.

Agarwal, V., Dauenhauer, P. J., Huber, G. W., and Auerbach, S. M. (2012). Ab initio dynamics of cellulose pyrolysis: Nascent decomposition pathways at 327 and 600 °C. J. Am. Chem. Soc., 134(36), 14958– 14972.

Agarwal, V., Huber, G. W., Conner, W. C., and Auerbach, S. M. (2011). Simulating infrared spectra andhydrogen bonding in cellulose Iβ at elevated temperatures. J. Chem. Phys., 135(13), 134506.

Amarasekara, A. S., Nguyen, L. H., Du, H., and Kommalapati, R. R. (2019). Kinetics and mechanism ofthe solid-acid catalyzed one-pot conversion of d-fructose to 5, 5′-[oxybis(methylene)]bis[2-furaldehyde] in dimethyl sulfoxide. SN Appl. Sci., 1(9), 964.

Ando, J., Huruta, N., Seto, M., and Akiyama, T. (1996). Kankyo no kagaku. Chapter 7, 87–96.

Antal, M. J., and Grønli, M. (2003). The art, science, and technology of charcoal production. Ind. Eng.Chem. Res., 42(8), 1619–1640.

Asensio, J. L., Ardá, A., Cañada, F. J., and Jiménez-Barbero, J. (2013). Carbohydrate-aromatic interactions.

Acc. Chem. Res., 46(4), 946–954.

Baccile, N., Laurent, G., Babonneau, F., Fayon, F., Titirici, M.-M., and Antonietti, M. (2009). Structuralcharacterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations.J. Phys. Chem. C, 113(22), 9644–9654.

Banyasz, J. L., Li, S., Lyons-Hart, J. L., and Shafer, K. H. (2001). Cellulose pyrolysis: The kinetics ofhydroxyacetaldehyde evolution. J. Anal. Appl. Pyrolysis, 57(2), 223–248.

Béguin, P., and Aubert, J.P. (1994). The biological degradation of cellulose. FEMS Microbiol. Rev., 13(1),25–58.

Blanco, P. H., Lad, J. B., Bridgwater, A. V, and Holm, M. S. (2018). Production of glucose from the acidhydrolysis of anhydrosugars. ACS Sustain. Chem. Eng., 6(10), 12872–12883.

Boutin, O., Ferrer, M., and Lédé, J. (1998). Radiant flash pyrolysis of cellulose - Evidence for the formationof short life time intermediate liquid species. J. Anal. Appl. Pyrolysis, 47(1), 13–31.

Boutin, O., Ferrer, M., and Lédé, J. (2002). Flash pyrolysis of cellulose pellets submitted to a concentratedradiation: Experiments and modelling. Chem. Eng. Sci., 57(1), 15–25.

BP statistical Review of World Energy 2020.

Bradbury, A. G. W. W., Sakai, Y., and Shafizadeh, F. (1979). A kinetic model for pyrolysis of cellulose. J.Appl. Polym. Sci., 23(11), 3271–3280.

Bridgeman, T. G., Jones, J. M., Shield, I., and Williams, P. T. (2008). Torrefaction of reed canary grass,wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856.

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and

Bioenergy, 38, 68–94.

Broido, A., Javier-Son, A. C., Ouano, A. C., and Barrall, E. M. (1973). Molecular weight decrease in theearly pyrolysis of crystalline and amorphous cellulose. J. Appl. Polym. Sci., 17(12), 3627–3635.

Broido, A., and Nelson, M. A. (1975). Char yield on pyrolysis of cellulose. Combust. Flame, 24, 263–268.

Capart, R., Khezami, L., and Burnham, A. K. (2004). Assessment of various kinetic models for the pyrolysisof a microgranular cellulose. Thermochim. Acta, 417(1), 79–89.

Casanova, O., Iborra, S., and Corma, A. (2010). Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solidcatalysts. J. Catal., 275(2), 236–242.

Chambel, P., Oliveira, M. B., Andrade, P. B., Fernandes, J. O., Seabra, R. M., and Ferreira, M. A. (1998).Identification of 5,5’-oxy-dimethylene-bis(2-furaldehyde) by thermal decomposition of 5-hydroxymethyl-2-furfuraldehyde. Food Chem., 63(4), 473–477.

Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., and Engelhard, M. H. (2006). Oxidation of blackcarbon by biotic and abiotic processes. Org. Geochem., 37(11), 1477–1488.

Chheda, J. N., and Dumesic, J. A. (2007). An overview of dehydration, aldol-condensation andhydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal.Today, 123(1–4), 59–70.

Chidambaram, M., and Bell, A. T. (2010). A two-step approach for the catalytic conversion of glucose to2,5-dimethylfuran in ionic liquids. Green Chem., 12(7), 1253–1262.

Cho, J., Davis, J. M., and Huber, G. W. (2010). The intrinsic kinetics and heats of reactions for cellulosepyrolysis and char formation. ChemSusChem., 3(10), 1162-1165.

Chun, Y., Sheng, G., Chiou, G. T., and Xing, B. (2004). Compositions and sorptive properties of cropresidue-derived chars. Environ. Sci. Technol., 38(17), 4649–4655.

Czernik, S., and Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy and Fuels, 18(2), 590–598.

Dasappa, S. (2014). Thermochemical conversion of biomass. Transformation of Biomass, John Wiley &Sons, Ltd. Ch.6, 133–157.

Dauenhauer, P. J., Colby, J. L., Balonek, C. M., Suszynski, W. J., and Schmidt, L. D. (2009). Reactiveboiling of cellulose for integrated catalysis through an intermediate liquid. Green Chem., 11(10), 1555–1561.

Degenstein, J. C., Murria, P., Easton, M., Sheng, H., Hurt, M., Dow, A. R., Gao, J., Nash, J. J., Agrawal, R., Delgass, W. N., Ribeiro, F. H., and Kenttämaa, H. I. (2015). Fast pyrolysis of 13C-labeled cellobioses: Gaining insights into the mechanisms of fast pyrolysis of carbohydrates. J. Org. Chem., 80(3), 1909–1914.

Degroot, W. F., Pan, W.P., Rahman, M. D., and Richards, G. N. (1988). First chemical events in pyrolysis of wood. J. Anal. Appl. Pyrolysis, 13(3), 221–231.

Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage., 42(11), 1357–1378.

Dence, C.W. (1992) The determination of lignin. In Methods in Lignin Chemistry; Lin, S.Y.; Dence, C.W., Eds.; Springer-Verlag: Berlin, 33–61.

Di Blasi, C. (1994). Numerical simulation of cellulose pyrolysis. Biomass and Bioenergy, 7(1–6), 87–98.

Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., and Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338(6110), 1055–1060.

Dollimore, D., and Holt, B. (1973). Thermal degradation of cellulose in nitrogen. J. Polym. Sci. Polym. Phys. Ed., 11(9), 1703–1711.

Duff, S. J. B., and Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour. Technol., 55(1), 1–33.

Ehara, K., and Saka, S. (2005). Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J. Wood Sci., 51(2), 148–153.

Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J. L., Heux, L., Dubreuil, F., and Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1), 57–65.

Emons, A. M. C., and Mulder, B. M. (2000). How the deposition of cellulose microfibrils builds cell wall architecture. Trends in Plant Sci., 5(1), 35–40.

Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997). Modeling and optimization of the dilute- sulfuric acid pretreatment of corn stover polar and switchgrass. Bioresour. Technol., 59(2–3), 129–136.

Fahlén, J., and Salmén, L. (2002). On the Lamellar structure of the tracheid cell wall. Plant Biol., 4(3), 339–345.

Falco, C., Perez Caballero, F., Babonneau, F., Gervais, C., Laurent, G., Titirici, M.M., and Baccile, N. (2011). Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir, 27(23), 14460–14471.

Fergus, B. J., Procter, A. R., Scott, J. A. N., and Goring, D. A. I. (1969). The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci. Technol., 3(2), 117–138.

Fidel, R. B., Laird, D. A., and Thompson, M. L. (2013). Evaluation of modified boehm titration methods for use with biochars. J. Environ. Qual., 42(6), 1771–1778.

Fisher, T., Hajaligol, M., Waymack, B., and Kellogg, D. (2002). Pyrolysis behavior and kinetics of biomass derived materials. J. Anal. Appl. Pyrolysis, 62(2), 331–349.

Fratzl, P. (2003). Cellulose and collagen: From fibres to tissues. Curr. Opin. Colloid Interface Sci., 8(1), 32–39

Fukazawa, K., and Imagawa, H. (1981). Quantitative analysis of lignin using an UV microscopic image analyser. variation within one growth increment. Wood Sci. Technol., 15(1), 45–55.

Fukutome, A., Kawamoto, H., and Saka, S. (2014). Gas- and coke/soot-forming reactivities of cellulosederived tar components under nitrogen and oxygen/nitrogen. J. Anal. Appl. Pyrolysis, 108, 98–108.

Fukutome, A., Kawamoto, H., and Saka, S. (2015). Processes forming gas, tar, and coke in cellulose gasification from gas‐phase reactions of levoglucosan as intermediate. ChemSusChem, 8(13), 2240–2249.

Fukutome, A., Kawamoto, H., and Saka, S. (2016). Gas-phase reactions of glyceraldehyde and 1,3- dihydroxyacetone as models for levoglucosan conversion during biomass gasification. ChemSusChem, 9(7), 703–712.

Gani, A., and Naruse, I. (2007). Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew. Energy, 32(4), 649–661.

Gardiner, D. (1966). The pyrolysis of some hexoses and derived di-, tri-, and poly-saccharides. J. Chem. Soc. C Org., 1473–1476.

Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., and Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 27(3), 279–282. Haas, T. J., Nimlos, M. R., and Donohoe, B. S. (2009). Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis. Energy & Fuels, 23(7), 3810–3817.

Halpern, Y., and Patai, S. (1969). Pyrolytic reactions of carbohydrates. Part V. isothermal decomposition of cellulose in vacuo. Isr. J. Chem., 7(5), 673–683.

Helle, S., Bennett, N. M., Lau, K., Matsui, J. H., and Duff, S. J. B. (2007). A kinetic model for production of glucose by hydrolysis of levoglucosan and cellobiosan from pyrolysis oil. Carbohydr. Res., 342(16), 2365–2370.

Herrero, M. A., Kremsner, J. M., and Kappe, C. O. (2008). Nonthermal microwave effects revisited:  On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem., 73(1), 36–47.

Hopkins, M. W., DeJenga, C., and Antal, M. J. (1984). The flash pyrolysis of cellulosic materials using concentrated visible light. Sol. Energy, 32(4), 547–551.

Hosoya, T., Kawamoto, H., and Saka, S. (2007). Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J. Anal. Appl. Pyrolysis, 78(2), 328–336.

Hosoya, Takashi, Kawamoto, H., and Saka, S. (2006). Thermal stabilization of levoglucosan in aromatic substances. Carbohydr. Res., 341(13), 2293–2297.

Hosoya, Takashi, Kawamoto, H., and Saka, S. (2008). Different pyrolytic pathways of levoglucosan in vapor- and liquid/solid-phases. J. Anal. Appl. Pyrolysis, 83(1), 64–70.

Hosoya, Takashi, Nakao, Y., Sato, H., Kawamoto, H., and Sakaki, S. (2009). Thermal degradation of methyl β-D-glucoside. A theoretical study of plausible reaction mechanisms. J. Org. Chem., 74(17), 6891–6894.

Hudson, K. L., Bartlett, G. J., Diehl, R. C., Agirre, J., Gallagher, T., Kiessling, L. L., and Woolfson, D. N. (2015). Carbohydrate-aromatic interactions in proteins. J. Am. Chem. Soc., 137(48), 15152–15160.

IPCC. (2013). Climate Change 2013: The physical science basis. Contribution of working Group I to the fifth assesment areport of the intergovermental Panel on Climate change. Cambridge Universitiy Press, Cambridge, United Kingdom and New York, NY, USA, 1535.

Itabaiana Junior, I., Avelar Do Nascimento, M., De Souza, R. O. M. A., Dufour, A., and Wojcieszak, R. (2020). Levoglucosan: A promising platform molecule? Green Chemistry. 22(18), 5859–5880.

Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., and Ashwath, N. (2012). Biofuels production through biomass pyrolysis- A technological review. Energies, 5(12), 4952–5001.

Julien, S., Chornet, E., Tiwari, P. K., and Overend, R. P. (1991). Vacuum pyrolysis of cellulose: Fourier transform infrared characterization of solid residues, product distribution and correlations. J. Anal. Appl. Pyrolysis, 19, 81–104.

Kang, S., Li, X., Fan, J., and Chang, J. (2012). Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind. Eng. Chem. Res., 51(26), 9023–9031.

Kashiwagi, T., and Nambu, H. (1992). Global kinetic constants for thermal oxidative degradation of a cellulosic paper. Combust. Flame, 88(3–4), 345–368.

Katō, K. (1967). Pyrolysis of cellulose. Agric. Biol. Chem., 31(6), 657–663.

Katō, K., and Komorita, H. (1968). Pyrolysis of cellulose. Agric. Biol. Chem., 32(1), 21–26. Kawamoto, H., and Saka, S. (2006). Heterogeneity in cellulose pyrolysis indicated from the pyrolysis in sulfolane. J. Anal. Appl. Pyrolysis, 76(1–2), 280–284.

Kawamoto, Haruo. (2016). Review of reactions and molecular mechanisms in cellulose pyrolysis. Curr. Org. Chem., 20(23), 2444-2457.

Kawamoto, Haruo, Hosoya, T., Ueno, Y., Shoji, T., and Saka, S. (2014). Thermal stabilization and decomposition of simple glycosides in the presence of aromatic substances in closed ampoules: The role of OH⋯π hydrogen bonding. J. Anal. Appl. Pyrolysis, 109, 41–46.

Kawamoto, Haruo, Murayama, M., and Saka, S. (2003). Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation. J. Wood Sci., 49(5), 469–473.

Kawamoto, Haruo, Ueno, Y., and Saka, S. (2013). Thermal reactivities of non-reducing sugars in polyether—Role of intermolecular hydrogen bonding in pyrolysis. J. Anal. Appl. Pyrolysis, 103, 287–292.

Kersten, S., and Garcia-Perez, M. (2013). Recent developments in fast pyrolysis of ligno-cellulosic materials. Curr. Opin. Biotechnol., 24(3), 414–420.

Keskiväli, J., Wrigstedt, P., Lagerblom, K., and Repo, T. (2017). One-step Pd/C and Eu(OTf)3 catalyzed hydrodeoxygenation of branched C11 and C12 biomass-based furans to the corresponding alkanes. Appl. Catal. A Gen., 534, 40–45.

Kim, D. Y., Nishiyama, Y., Wada, M., Kuga, S., and Okano, T. (2001). Thermal decomposition of cellulose crystallities in wood. Holzforschung, 55(5), 521–524.

Klemm, D., Heublein, B., Fink, H. P., and Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie , 44(22), 3358–3393.

Kokot, S., Czarnik-Matusewicz, B., and Ozaki, Y. (2002). Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose. Biopolymers, 67(6), 456–469.

Kumar, A., Jones, D., and Hanna, M. (2009). Thermochemical biomass gasification: A review of the current status of the technology. Energies, 2(3), 556–581.

Kwon, G.J., Kim, D.Y., Kimura, S., and Kuga, S. (2007). Rapid-cooling, continuous-feed pyrolyzer for biomass processing: Preparation of levoglucosan from cellulose and starch. J. Anal. Appl. Pyrolysis, 80(1), 1–5.

Kwon, G. J., Kuga, S., Hori, K., Yatagai, M., Ando, K., and Hattori, N. (2006). Saccharification of cellulose by dry pyrolysis. J. Wood Sci., 52(5), 461–465.

Lédé, J., Blanchard, F., and Boutin, O. (2002). Radiant flash pyrolysis of cellulose pellets: Products and mechanisms involved in transient and steady state conditions. Fuel, 81(10), 1269–1279.

Lédé, J., Li, H. Z., Villermaux, J., and Martin, H. (1987). Fusion-like behaviour of wood pyrolysis. J. Anal. Appl. Pyrolysis, 10(4), 291–308.

Lichtenegger, H., Müller, M., Paris, O., Riekel, C., and Fratzl, P. (1999). Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction. J. Appl. Crystallogr., 32(6), 1127–1133.

Liu, Y. S., Baker, J. O., Zeng, Y., Himmel, M. E., Haas, T., and Ding, S. Y. (2011). Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J. Biol. Chem., 286(13), 11195–11201.

Luo, G., Chandler, D. S., Anjos, L. C. A., Eng, R. J., Jia, P., and Resende, F. L. P. (2017). Pyrolysis of whole wood chips and rods in a novel ablative reactor. Fuel, 194, 229–238.

Maria, del C. Fernandez, A., Francisco, Javier, C., Jesus, J.B., and Gabriel, C. (2005). Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions. J. Am. Chem. Soc., 127(20).

Majumdar, A., Mukhopadhyay, S., and Yadav, R. (2010). Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. Int. J. Therm. Sci., 49(10), 2042–2048.

Mamleev, V., Bourbigot, S., and Yvon, J. (2007). Kinetic analysis of the thermal decomposition of cellulose: The main step of mass loss. J. Anal. Appl. Pyrolysis, 80(1), 151–165.

Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol., 46(15), 7939–7954.

Matsuoka, S., Kawamoto, H., and Saka, S. (2011a). Thermal glycosylation and degradation reactions occurring at the reducing ends of cellulose during low-temperature pyrolysis. Carbohydr. Res., 346(2), 272–279.

Matsuoka, S., Kawamoto, H., and Saka, S. (2011b). Reducing end-group of cellulose as a reactive site for thermal discoloration. Polym. Degrad. Stab., 96(7), 1242–1247.

Matsuoka, S., Kawamoto, H., and Saka, S. (2012). Retro-aldol-type fragmentation of reducing sugars preferentially occurring in polyether at high temperature: Role of the ether oxygen as a base catalyst. J. Anal. Appl. Pyrolysis, 93, 24–32.

Matsuoka, S., Kawamoto, H., and Saka, S. (2014). What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J. Anal. Appl. Pyrolysis, 106, 138–146.

Matsuoka, S., Kawamoto, H., and Saka, S. (2016). Reactivity of cellulose reducing end in pyrolysis as studied by methyl glucoside-impregnation. Carbohydr. Res., 420, 46–50.

Mayes, H. B., and Broadbelt, L. J. (2012). Unraveling the reactions that unravel cellulose. J. Phys. Chem. A, 116(26), 7098–7106.

McHenry, M. P. (2009). Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric. Ecosyst. Environ., 129(1–39), 1–7.

Mettler, M. S., Paulsen, A. D., Vlachos, D. G., and Dauenhauer, P. J. (2012). The chain length effect in pyrolysis: Bridging the gap between glucose and cellulose. Green Chem., 14(5), 1284–1288.

Milne, T. A., and Evans, R. J. (1998). Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion, National Renewable Energy Laboratory, Golden, CO. Milosavljevic, I., Oja, V., and M. Suuberg, E. (1996). Thermal Effects in Cellulose Pyrolysis:  Relationship to Char Formation Processes. Ind. Eng. Chem. Res., 35(3), 653–662.

Mok, W. S. L., and Antal, M. J. (1983). Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis. Thermochim. Acta, 68(2–3), 165–186.

Musha, Y., and Goring, D. A. I. (1975). Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci. Technol., 9(1), 45–58.

Nelson, M. L., and Tripp, V. W. (1953). Determination of the leveling-off degree of polymerization of cotton and rayon. J. Polym. Sci., 10(6), 577–586.

Nimlos, M. R., Blanksby, S. J., Qian, X., Himmel, M. E., and Johnson, D. K. (2006). Mechanisms of glycerol dehydration. J. Phys. Chem. A, 110(18), 6145–6156.

Nishiyama, Y. (2009). Structure and properties of the cellulose microfibril. J. Wood Sci., 55(4), 241–249.

Nishiyama, Y., Kim, U. J., Kim, D. Y., Katsumata, K. S., May, R. P., and Langan, P. (2003). Periodic disorder along ramie cellulose microfibrils. Biomacromolecules, 4(4), 1013–1017.

Nomura, T., Kawamoto, H., and Saka, S. (2017). Pyrolysis of cellulose in aromatic solvents: Reactivity, product yield, and char morphology. J. Anal. Appl. Pyrolysis, 126, 209–217.

Nomura, T., Minami, E., and Kawamoto, H. (2020). Carbonization of cellulose cell wall evaluated with ultraviolet microscopy. RSC Adv., 10(13), 7460–7467.

Nordin, S. B., Nyren, J. O., and Back, E. L. (1974). An indication of molten cellulose produced in a laser beam. Text. Res. J., 44(2), 152–154.

O’Sullivan, A. C. (1997). Cellulose: The structure slowly unravels. Cellulose, 4(3), 173–207.

Paethanom, A., Nakahara, S., Kobayashi, M., Prawisudha, P., and Yoshikawa, K. (2012). Performance of tar removal by absorption and adsorption for biomass gasification. Fuel Process. Technol., 104, 144–154.

Pastorova, I., Botto, R. E., Arisz, P. W., and Boon, J. J. (1994). Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr. Res., 262(1), 27–47.

Patwardhan, P. R., Satrio, J. A., Brown, R. C., and Shanks, B. H. (2009). Product distribution from fast pyrolysis of glucose-based carbohydrates. J. Anal. Appl. Pyrolysis, 86(2), 323–330.

Pereira, B. L. C., Oliveira, A. C., Carvalho, A. M. M. L., Carneiro, A. de C. O., Santos, L. C., and Vital, B. R. (2012). Quality of wood and charcoal from eucalyptus clones for ironmaster use . Int. J. For. Res., 2012, 1–8.

Perez Locas, C., and Yaylayan, V. A. (2008). Isotope labeling studies on the formation of 5- (Hydroxymethyl)-2-furaldehyde (HMF) from sucrose by Pyrolysis-GC/MS. J. Agric. Food Chem.,56(15), 6717–6723.

Perkins, G., Bhaskar, T., and Konarova, M. (2018). Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable Sustainable Energy Rev., 90, 292–315.

Pictet, A. (1918). Sur la transformation de la lévoglucosane en dextrine. Helv. Chim. Acta, 1(1), 226–230.

Piskorz, J., Radlein, D., Scott, D. S., and Czernik, S. (1989). Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J. Anal. Appl. Pyrolysis, 16(2), 127–142.

Piskorz, J., Radlein, D., and Scott S. S. (1986). On the mechanism of the rapid pyrolysis of cellulose, J. Anal. Appl. Pyrolysis, 9(2), 127–142.

Prins, M. J., Ptasinski, K. J., and Janssen, F. J. J. G. (2006). Torrefaction of wood. Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis, 77(1), 28–34.

Rabemanolontsoa, H., and Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresour. Technol., 199, 83–91.

Radlein, D. S. T. A. G., Grinshpun, A., Piskorz, J., and Scott, D. S. (1987). On the presence of anhydrooligosaccharides in the sirups from the fast pyrolysis of cellulose. J. Anal. Appl. Pyrolysis, 12(1), 39–49.

Rafsanjani, A., Stiefel, M., Jefimovs, K., Mokso, R., Derome, D., and Carmeliet, J. (2014). Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J. R. Soc. Interface, 11(95), 20140126.

Reynolds, J. G., and Burnham, A. K. (1997). Pyrolysis decomposition kinetics of cellulose-based materials by constant heating rate micropyrolysis. Energy & Fuels, 11(1), 88–97.

Richards, G. N. (1987). Glycolaldehyde from pyrolysis of cellulose. J. Anal. Appl. Pyrolysis, 10(3), 251– 255.

Rieger, R., and Müllen, K. (2010). Forever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studies. J. Phys. Org. Chem., 23, 315-325.

Rowland, S. P., and Roberts, E. J. (1972). The nature of accessible surfaces in the microstructure of cotton cellulose. J. Polym. Sci. Part A-1 Polym. Chem., 10(8), 2447–2461.

Ruel, K., Barnoud, F., and Goring, D. A. I. (1978). Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy. Wood Sci. Technol., 12(4), 287–291.

Saha, N., Saba, A., and Reza, M. T. (2019). Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood. J. Anal. Appl. Pyrolysis, 137, 138–145.

Saka, S, Whiting, P., Fukazawa, K., and Goring, D. A. I. (1982). Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA. Wood Sci. Technol., 16(4), 269–277.

Saka, S. (2001). Biomass Energy and Environment.

Sanders, E. B., Goldsmith, A. I., and Seeman, J. I. (2003). A model that distinguishes the pyrolysis of Dglucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrolysis, 66(1), 29–50.

Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., and Arai, K. (1998). Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluids, 13(1–3), 261–268.

Scheirs, J., Camino, G., and Tumiatti, W. (2001). Overview of water evolution during the thermal degradation of cellulose. Eur. Polym. J., 37(5), 933–942.

Schroeter, J., and Felix, F. (2005). Melting cellulose. Cellulose ,12(2), 159–165).

Scifinder. (2014). Scifinder, Chemical Abstracts Service: Columbus, OH; https://scifinder.cas.org (Accessed October 13, 2020); calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02. 1994-2020.

Sekiguchi, Y., Frye, J. S., and Shafizadeh, F. (1983). Structure and formation of cellulosic chars. J. Appl. Polym. Sci., 28(11), 3513–3525.

Sekiguchi, Y., and Shafizadeh, F. (1984). The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. J. Appl Polym Sci. 29(4) 1267-1286.

Seshadri, V., and Westmoreland, P. R. (2012). Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. J. Phys. Chem. A, 116(49), 11997–12013.

Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrolysis, 3(4), 283–305.

Shafizadeh, F, and Bradbury, A. G. W. (1979). Thermal degradation of cellulose in air and nitrogen at low temperatures. J. Appl. Polym. Sci., 23(5), 1431–1442.

Shafizadeh, Fred, Furneaux, R. H., Cochran, T. G., Scholl, J. P., and Sakai, Y. (1979). Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J. Appl. Polym. Sci., 23(12), 3525–3539.

Shafizadeh, Fred, and Sekiguchi, Y. (1983). Development of aromaticity in cellulosic chars. Carbon N. Y., 21(5), 511–516.

Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Murthy Konda, N. V. S. N., Garcia, M. C., Wang, L., Hallett, J., and Shah, N. (2019). The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Prog. Energy Combust. Sci., 71, 1–80.

Shoji, T., Kawamoto, H., and Saka, S. (2014). Boiling point of levoglucosan and devolatilization temperatures in cellulose pyrolysis measured at different heating area temperatures. J. Anal. Appl. Pyrolysis, 109, 185–195.

Shoji, T., Kawamoto, H., and Saka, S. (2017). Complete inhibition of char formation from cellulose in fast pyrolysis with aromatic substance. J. Anal. Appl. Pyrolysis, 124, 638–642.

Smith, R. C., and Howard, H. C. (1937). Aromatization of cellulose by heat. J. Am. Chem. Soc., 59(2), 234– 236.

Soares, S., Ricardo, N. M. P., Jones, S., and Heatley, F. (2001). High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR. Eur. Polym. J., 37(4), 737–745.

Sørensen, H., Rosenberg, P., Petersen, H., and Sørensen, L. (2000). Char porosity characterisation by scanning electron microscopy and image analysis. Fuel, 79(11), 1379–1388.

Silverstein R. M., Bassler G. C., and Morrill T. C. (1986) "Spectrometric Identification of Organic Compounds," Japanese Edition, ed. by S. Araki, Y. Mashiko and O. Yarnamoto, Tokyo-Kagakudojin, Tokyo.

Sun, Y., and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 83(1), 1–11. Suzuki, J., Azuma, J., Koshijima, T., Okamura, K., and Okamoto, H. (1983). Characterization of monoand oligosaccharides produced by CO2 laser irradiation on cellulose. Chem. Lett., 12(4), 481–484.

Tang, M., and Bacon, R. (1964a). Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon N. Y., 2(3), 211–220.

Tang, M. M., and Bacon, R. (1964b). Cnization of cellulose fibers—I. Low tearbomperature pyrolysis. Carbon N. Y., 2(3), 211–220.

Teixeira, A. R., Mooney, K. G., Kruger, J. S., Williams, C. L., Suszynski, W. J., Schmidt, L. D., Schmidt, D. P., and Dauenhauer, P. J. (2011). Aerosol generation by reactive boiling ejection of molten cellulose. Energy Environ. Sci., 4(10), 4306–4321.

Thibodeaux, D. P., and Evans, J. P. (1986). Cotton Fiber Maturity by Image Analysis. Text. Res. J., 56(2), 130–139.

Tillman, D. A. (1978). Chapter 2 - The present use of wood as a fuel, Wood as an Energy Resource (33- 64): Academic Press.

Titirici, M. M. M., Antonietti, M., and Baccile, N. (2008). Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem., 10(11), 1204–1212.

Tschiersky, H., and Baltes, W. (1989). Curie-point pyrolysis and gas chromatography/mass spectrometry of 5,5′-oxydimethylenebis(2-furfural). J. Anal. Appl. Pyrolysis, 17(1), 91–93.

Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., and Ashrafur, S. M. (2018). An overview of recent developments in biomass pyrolysis technologies. Energies , 11(11), 3115. Zandvoort, I., Wang, Y., Rasrendra, C. B., van Eck, E. R. H., Bruijnincx, P. C. A., Heeres, H. J., and Weckhuysen, B. M. (2013). Formation, moecular sructure, and mrphology of hmins in bomass cnversion: Influence of fedstock and pocessing cnditions. ChemSusChem, 6(9), 1745–1758.

Venderbosch, R., and Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioprod. Biorefining, 4(2), 178–208. Sivers, M., and Zacchi, G. (1995). A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour. Technol., 51(1), 43–52.

Wang, S., Dai, G., Yang, H., and Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A stateof-the-art review. Prog. Energy Combust. Sci., 62, 33–86).

Watanabe, A., Morita, S., and Ozaki, Y. (2006). Study on temperature-dependent changes in hydrogen bonds in cellulose Iβ by infrared spectroscopy with perturbation-correlation moving-window twodimensional correlation spectroscopy. Biomacromolecules, 7(11), 3164–3170.

Weldekidan, H., Strezov, V., and Town, G. (2018). Review of solar energy for biofuel extraction. In Renewable Sustainable Energy Rev., 88, 184–192.

West, R. M., Liu, Z. Y., Peter, M., Gärtner, C. A., and Dumesic, J. A. (2008). Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J. Mol. Catal. A Chem., 296(1–2), 18–27.

Westerhof, R. J. M., Oudenhoven, S. R. G., Marathe, P. S., Engelen, M., Garcia-Perez, M., Wang, Z., and Kersten, S. R. A. (2016). The interplay between chemistry and heat/mass transfer during the fast pyrolysis of cellulose. React. Chem. Eng., 1(5), 555–566.

Whittaker, R. H. (1979). Seibutsugunshu to Seitaikei, 2nd edn. 1979.

Wrigstedt, P., Keskiväli, J., Perea-Buceta, J. E., and Repo, T. (2017). One-pot transformation of carbohydrates into valuable furan derivatives via 5-Hydroxymethylfurfural. ChemCatChem, 9(22), 4244–4255.

Xu, B., and Huang, Y. (2004). Image analysis for cotton fibers Part II: Cross-sectional measurements. Text. Res. J., 74(5), 409–416.

Xu, B., Pourdeyhimi, B., and Sobus, J. (1993). Fiber cross-sectional shape analysis using image processing techniques. Text. Res. J., 63(12), 717–730.

Yuan, J. H., Xu, R. K., and Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol., 102(3), 3488–3497.

Zeng, K., Gauthier, D., Soria, J., Mazza, G., and Flamant, G. (2017). Solar pyrolysis of carbonaceous feedstocks: A review. Sol. Energy, 156, 73–92.

Zhang, X., Golding, J., and Burgar, I. (2002). Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer, 43(22), 5791–5796.

Zhou, L., Nguyen, T.H., and Adesina, A. A. (2012). The acetylation of glycerol over amberlyst-15: Kinetic and product distribution. Fuel Process. Technol., 104, 310–318.

Zickler, G. A., Wagermaier, W., Funari, S. S., Burghammer, M., and Paris, O. (2007). In situ X-ray diffraction investigation of thermal decomposition of wood cellulose. J. Anal. Appl. Pyrolysis, 80(1), 134–140.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る