リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ヒト膀胱排尿筋のカルシウム感受性亢進における環状アデノシン一リン酸の役割」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ヒト膀胱排尿筋のカルシウム感受性亢進における環状アデノシン一リン酸の役割

林, 摩耶 HAYASHI, Maya ハヤシ, マヤ 九州大学

2023.12.31

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Actions of cAMP on calcium sensitization in
human detrusor smooth muscle contraction
林, 摩耶

https://hdl.handle.net/2324/7165102
出版情報:Kyushu University, 2023, 博士(医学), 論文博士
バージョン:
権利関係:Public access to the fulltext file is restricted for unavoidable reason (2)

氏 名:

林 摩耶

論文名:

Actions of cAMP on calcium sensitization in human detrusor smooth muscle
contraction
(ヒト膀胱排尿筋のカルシウム感受性亢進における環状アデノシン一リン酸の役
割)

区 分:



論 文 内 容 の 要 旨

【目的】ヒト膀胱排尿筋のカルシウム感受性亢進による収縮機構に対する環状アデノシン一リン酸
(cyclic adenosine monophosphate, cAMP)の弛緩機序を明らかにする。また、cAMPによって直接活性
化される新規蛋白質(Epac)の効果を明らかにする。
【材料と方法】ヒト排尿筋条片をαトキシンによって膜脱膜化し等尺性張力測定実験を行った。10 ・
Mカルバコール、100 ・M GTPによるカルシウム感受性亢進に対するcAMPの抑制機構について、選択的
rhoキナーゼ(ROK)阻害剤であるY-27632、選択的プロテインキナーゼC(PKC)阻害剤であるGF109203Xを用いて検討した。さらに選択的プロテインキナーゼA(PKA)活性剤である6-Benz-cAMPと選
択的Epac活性剤である8-pCPT-2’-O-Me-cAMPを用いた。
【結果】cAMPはカルバコール誘発性カルシウム感受性亢進を濃度依存的に抑制した。GF-109203X(10
・M)はcAMPの抑制効果を有意に増強した。Y-27632(10・M)による抑制効果の増強はそれほど大きく
はなかった。6-Bnz-cAMP(100・M)は8-pCPT-2’-O-Me-cAMP(100・M)に比べ、より収縮張力を減弱
させた。
【結語】cAMPはPKC経路より主にROK経路を抑制していると考えられる。PKA依存的経路が優勢であった
がEpac(PKA非依存的経路)もわずかではあるが働いている。

この論文で使われている画像

参考文献

1) Raeymaekers L, Eggermont JA, Wuytack F, Casteels R. Effects of cyclic nucleotide dependent

protein kinases on the endoplasmic reticulum Ca2+ pump of bovine pulmonary artery. Cell Calcium

1990; 11(4): 261-268.

2) Mundiña-Weilenmann C, Vittone L, Rinaldi G, Said M, de Cingolani GC, Mattiazzi A.

Endoplasmic reticulum contribution to the relaxant effect of cGMP- and cAMP-elevating agents in

feline aorta. Am J Physiol Heart Circ Physiol 2000; 278(6): H1856-65

This article is protected by copyright. All rights reserved.

Accepted Article

3) Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP-dependent protein kinase activates

Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 1993; 265(1 Pt 1):

C299-303.

4) Xin W, Li N, Cheng Q, Petkov GV. BK channel-mediated relaxation of urinary bladder smooth

muscle: a novel paradigm for phosphodiesterase type 4 regulation of bladder function. J Pharmacol

Exp Ther 2014; 349(1): 56-65.

5) Conti MA, Adelstein RS. The relationship between calmodulin binding and phosphorylation of

smooth muscle myosin kinase by the catalytic subunit of 3’:5’ cAMP-dependent protein kinase. J Biol

Chem 1981; 256(7): 3178–3181.

6) Rembold CM. Regulation of contraction and relaxation in arterial smooth muscle. Hypertension

1992; 20(2): 129–137.

7) Himpens B, Matthijs G, Somlyo AV, Butler TM, Somlyo AP. Cytoplasmic free calcium, myosin

light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol 1988; 92(6):

713-729.

8) Kitazawa T, Masuo M, Somlyo AP. G protein-mediated inhibition of myosin light-chain

phosphatase in vascular smooth muscle. Proc Natl Acad Sci U S A 1991; 88(20): 9307-9310.

9) Frazier EP, Mathy MJ, Peters SL, Michel MC. Does cyclic AMP mediate rat urinary bladder

relaxation by isoproterenol? J Pharmacol Exp Ther 2005; 313(1): 260-267.

10) Longhurst PA, Briscoe JA, Rosenberg DJ, Leggett RE. The role of cyclic nucleotides in

guinea-pig bladder contractility. Br J Pharmacol 1997; 121(8): 1665-1672.

This article is protected by copyright. All rights reserved.

Accepted Article

11) Morita T, Tsujii T, Dokita S. Regional difference in functional roles of cAMP and cGMP in lower

urinary tract smooth muscle contractility. Urol Int 1992; 49(4): 191-195.

12) Morita T, Ando M, Kihara K, Oshima H. Species differences in cAMP production and contractile

response induced by beta-adrenoceptor subtypes in urinary bladder smooth muscle. Neurourol Urodyn

1993; 12(2): 185-190

13) Michel MC, Sand C. Effect of pre-contraction on β-adrenoceptor-mediated relaxation of rat

urinary bladder. World J Urol 2009; 27(6): 711-715

14) Uchida H, Shishido K, Nomiya M, Yamaguchi O. Involvement of cyclic AMP-dependent and

-independent mechanisms in the relaxation of rat detrusor muscle via beta-adrenoceptors. Eur J

Pharmacol 2005; 518(2-3): 195-202.

15) Witte LP, de Haas N, Mammen M, et al. Muscarinic receptor subtypes and signalling involved in

the attenuation of isoprenaline-induced rat urinary bladder relaxation. Naunyn Schmiedebergs Arch

Pharmacol 2011; 384(6):555-563.

16) Schneider T, Fetscher C, Michel MC. Human Urinary Bladder Strip Relaxation by the

β-Adrenoceptor Agonist Isoprenaline: Methodological Considerations and Effects of Gender and Age.

Front Pharmacol 2011; 25(2): 11.

17) Truss MC, Uckert S, Stief CG, Kuczyk M, Jonas U. Cyclic nucleotide phosphodiesterase (PDE)

isoenzymes in the human detrusor smooth muscle. II. Identification and characterization. Urol Res

1996; 24(3): 123-128.

This article is protected by copyright. All rights reserved.

Accepted Article

18) Oger S, Behr-Roussel D, Gorny D, et al. Relaxation of phasic contractile activity of human

detrusor strips by cyclic nucleotide phosphodiesterase type 4 inhibition. Eur Urol 2007; 51(3):

772-780.

19) Kaiho Y, Nishiguchi J, Kwon DD, et al. The effects of a type 4 phosphodiesterase inhibitor and

the muscarinic cholinergic antagonist tolterodine tartrate on detrusor overactivity in female rats with

bladder outlet obstruction. BJU Int 2008; 101(5): 615-620.

20) Oger S, Behr-Roussel D, Gorny D, et al. Signalling pathways involved in sildenafil-induced

relaxation of human bladder dome smooth muscle. Br J Pharmacol 2010; 160(5): 1135-1143

21) Shahab N, Kajioka S, Seki N, Naito S. Functional role of muscarinic receptor subtypes in calcium

sensitization and their contribution to rho-kinase and protein kinase C pathways in contraction of

human detrusor smooth muscle. Urology 2012; 79(5): 1184.e7-13.

22) Zieba BJ, Artamonov MV, Jin L, et al. The cAMP-responsive Rap1 guanine nucleotide exchange

factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem

2011; 286(19): 16681-16692.

23) Rajagopal S, Kumar DP, Mahavadi S, et al. Activation of G protein-coupled bile acid receptor,

TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho

kinase pathway. Am J Physiol Gastrointest Liver Physiol 2013; 304(5): G527-535.

24) Roscioni SS, Maarsingh H, Elzinga CR, et al. Epac as a novel effector of airway smooth muscle

relaxation. J Cell Mol Med 2011; 15(7): 1551-1563.

This article is protected by copyright. All rights reserved.

Accepted Article

25) Nishimura J, Kolber M, van Breemen C. Norepinephrine and GTP-gamma-S increase

myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys

Res Commun 1988; 157(2): 677-683.

26) Takahashi R, Nishimura J, Hirano K, Seki N, Naito S, Kanaide H. Ca2+ sensitization in

contraction of human bladder smooth muscle. J Urol 2004; 172(2): 748-752.

27) Shahab N, Kajioka S, Takahashi R, et al. Novel effect of 2-aminoethoxydiphenylborate through

inhibition of calcium sensitization induced by Rho kinase activation in human detrusor smooth

muscle. Eur J Pharmacol 2013; 708(1-3): 14-20.

28) Kitazawa T, Kobayashi S, Horiuti K, Somlyo AV, Somlyo AP. Receptor-coupled, permeabilized

smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the

contractile response to Ca2+. J Biol Chem 1989; 264(10): 5339-5342.

29) Shahab N, Kajioka S, Takahashi-Yanaga F, et al. Obstruction enhances rho-kinase pathway and

diminishes protein kinase C pathway in carbachol-induced calcium sensitization in contraction of

α-toxin permeabilized guinea pig detrusor smooth muscle. Neurourol Urodyn 2012; 31(4): 593-599.

30) Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a

Rho-associated protein kinase in hypertension. Nature 1997; 389(6654):

990-994.

31) Toullec D1, Pianetti P, Coste H, et al. The bisindolylmaleimide GF 109203X is a potent and

selective inhibitor of protein kinase C. J Biol Chem 1991; 266(24): 15771-15781.

32) Christensen AE, Selheim F, de Rooii J, et al. AMP Analog Mapping of Epac1 and cAMP Kinase.

Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12

cell neurite extension. J Biol Chem 2003; 278(37): 35394-35402.

This article is protected by copyright. All rights reserved.

Accepted Article

33) Rehmann H, Schwede F, Doskeland SO, et al. Ligand-mediated Activation of the

cAMP-responsive Guanine Nucleotide Exchange Factor Epac. J Biol Chem 2003; 278(40):

38548-38556.

34) Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation

pathways in vascular smooth muscle. Cell Mol Life Sci 2012; 69(2): 247-266.

35) Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature 1994;

372(6503): 231-236.

36) Azam MA, Yoshioka K, Ohkura S, et al. Ca2+-independent, inhibitory effects of cyclic adenosine

5'-monophosphate on Ca2+ regulation of phosphoinositide 3-kinase C2alpha, Rho, and myosin

phosphatase in vascular smooth muscle. J Pharmacol Exp Ther 2007; 320(2): 907-916.

37) Arrighi N, Bodei S, Zani D, et al. Different muscarinic receptor subtypes modulate proliferation

of primary human detrusor smooth muscle cells via Akt/PI3K and map kinases. Pharmacol Res 2013;

74: 1-6.

38) Asano M, Suzuki Y, Hidaka H. Effects of various calmodulin antagonists on contraction of rabbit

aortic strips. J Pharmacol Exp Ther 1982; 220(1): 191-196.

39) Grassie ME, Sutherland C, Ulke-Lemée A, et al. Cross-talk between Rho-associated kinase and

cyclic nucleotide-dependent kinase signaling pathways in the regulation of smooth muscle myosin

light chain phosphatase. J Biol Chem 2012; 287(43): 36356-36369.

40) Ehlert FJ1, Ahn S, Pak KJ, et al. Neuronally released acetylcholine acts on the M2 muscarinic

receptor to oppose the relaxant effect of isoproterenol on cholinergic contractions in mouse urinary

bladder. Pharmacol Exp Ther 2007; 322(2): 631-637.

This article is protected by copyright. All rights reserved.

Accepted Article

41) Yamaguchi O, Marui E, Kakizaki H, et al. Phase III, randomised, double-blind,

placebo-controlled study of the β3-adrenoceptor agonist mirabegron, 50 mg once daily, in Japanese

patients with overactive bladder. BJU Int 2014; 113(6): 951-960.

42) de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange

factor directly activated by cyclic AMP. Nature 1998; 396(6710): 474-477.

43) Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP-binding proteins that directly

activate Rap1. Science 1998; 282(5397): 2275-2279.

44) Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG. Cell physiology of cAMP sensor Epac.

J Physiol 2006; 577(Pt 1): 5-15.

ACKNOWLEDGEMENTS

This work was supported by a Grant-Aid for Special Purposes (23592371 and 26462445) from the

Japan Society for the Promotion of Science. We thank Prof. Alexaj Verkhratsky, University of

Manchester, for proofreading the manuscript and useful discussion. Noriko Hakota and Eriko

Gunshima assisted with experiments. Dr. Hirofumi Koga, Dr. Hiroyuki Nomura and Mrs. Ikumi

Takeuchi cooperated to obtain tissue from patients at Harasanshin Hospital. The English in this

document has been checked by at least two professional editors, both native speakers of English. For a

certificate, please see: http://www.textcheck.com/certificate/X06oxy

This article is protected by copyright. All rights reserved.

Accepted Article

FIGURE LEGENDS

Figure 1

Effects of cAMP on contraction induced by cumulative [Ca2+]i addition in α-toxin permeabilized

human detrusor smooth muscle.

Representative traces obtained from α-toxin permeabilized human detrusor smooth muscle following

the cumulative addition of Ca2+ in the absence (A) and presence (B) of 100 μM cAMP are shown. The

mean concentration-response curves for tension force to [Ca2+]i without (open circle) and with (filled

circle) 100 μM cAMP are shown in C. The tension force is expressed in a relative manner; the tension

force obtained at 3 μM [Ca2+]i is normalised as 100%. Error bars indicate means ± SD. Asterisks

indicate a significant difference (P < 0.05; N = 3, n = 6).

Figure 2

Effects of cyclic adenosine monophosphate (cAMP), forskolin (FSK) and rolipram on

Ca2+-induced contraction in α-toxin permeabilized human detrusor smooth muscle (DSM).

Representative traces demonstrate the effects of 100 μM cAMP (A), 10 μM FSK (B), and 10 μM

rolipram (C) on 1 μM [Ca2+]i-induced contraction in intact human detrusor smooth muscle. Graph

summarises the relaxation effect of cAMP, FSK and rolipram. The maximum tension force at 1 μM

[Ca2+]i was normalised as 100%. Columns represent means ± SD (N = 3 - 5, n = 6 - 20) (D).

This article is protected by copyright. All rights reserved.

Accepted Article

Figure 3

Effects of cAMP on Ca2+ sensitisation induced by guanosine-5'-triphosphate (GTP) plus

carbachol (CCh) in the absence and presence of AF-DX116 or

4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP) in α-toxin permeabilized human

detrusor smooth muscle.

Representative traces show the effects of 100 μM cAMP addition on Ca2+ sensitisation induced by

GTP plus CCh in the absence or presence of 1 μM AF-DX (A) and 1 μM 4-DAMP (B) in α-toxin

permeabilized human detrusor smooth muscle. Graph summarises the relaxation effect of cAMP with

(N = 3, n = 11) or without AF-DX (N = 3, n = 11) and 4-DAMP (N = 3, n = 10). Columns represent

means ± S.E. Only P values indicative of significance are presented.

Figure 4

Effects of cAMP on Ca2+ sensitisation induced by GTP plus carbachol (CCh) in the absence and

presence of Y-27632 or GF109203X in α-toxin permeabilized human detrusor smooth muscle.

Representative traces show the effects of 100 μM cAMP on Ca2+ sensitisation induced by 100 μM

GTP and 10 μM CCh in the absence or presence of 10 μM Y-27632 (Aa) or GF-109203X (Ba) in

α-toxin permeabilized human detrusor smooth muscle. Each graph shows the relationship between the

relaxation effect of 100 μM cAMP and the developed tension force induced by Ca2+ sensitisation (100

μM GTP and 10 μM CCh) obtained from each skinned fibre. The developed tension force induced by

GTP and CCh, and the cAMP-induced relaxation values are expressed in a relative manner; Ca2+ (1

μM)-induced tension force is normalised as 1.0. The relative values before (open circle) and after

This article is protected by copyright. All rights reserved.

Accepted Article

(filled circle) application of 10 μM Y-27632 (Ab) or 10 μM GF-109203X (Bb) obtained from the

same strip were plotted and connected with lines since Ca2+ sensitisation-enhancement by GTP plus

CCh varies among individual detrusor strips (21). Inner graphs demonstrate the relative value average

before and after application of Y-27632 or GF-109203X. Asterisks indicate significant differences

within the same strip, as compared with its own control. (Y-27632, N = 3, n = 8, P = 0.0011;

GF-109203X, N = 3, n = 6, P = 0.015).

Figure 5

Effects of cAMP on tension force induced by sphingosylphosphorylcholine (SPC), phorbol 12,13

dibutyrate (PDBu) or calyculin A in α-toxin permeabilized human detrusor smooth muscle.

Representative traces show the effects of 100 μM cAMP on tension force activated by 1 μM SPC (A),

1 μM PDBu (B) or 1 μM calyculin A (C) at 1 μM [Ca2+]i in α-toxin permeabilized human detrusor

smooth muscle. (D) The graph summarises normalised cAMP-induced relaxation following

augmentation by 1 μM SPC (N = 5, n = 21), 1 μM PDBu (N = 4, n = 16) or 1 μM calyculin A (N = 2,

n = 8). Columns represent means ± SE.

Figure 6

Effects of cAMP on Ca2+-induced contraction in the presence of a protein kinase A (PKA)

inhibitor, calmodulin antagonist, or PI3K inhibitor in α-toxin permeabilized human detrusor

smooth muscle.

This article is protected by copyright. All rights reserved.

Accepted Article

Representative traces show the effects of 100 μM cAMP on 1 μM Ca2+-induced contraction in the

presence or absence of 10 μM H-89 (A), 100 μM W-7 (B) or 10 μM LY-294002 (C) in α-toxin

permeabilized human detrusor smooth muscle. Graph shows the relative cAMP-induced relaxation

value following 10 μM H-89 (slashed column; N=4, n=8), 100 μM W-7 (dotted column; N = 4, n = 8)

or 10 μM LY-294002 (open column; N = 3, n = 6). Relaxation without any reagents (control; filled

column) is normalised as 100%. Columns represent means ± SE. Only P values indicative of

significance are presented.

Figure 7

Effects of cAMP analogues on Ca2+-induced contraction in α-toxin permeabilized human

detrusor smooth muscle.

Representative traces show the effects of 100 μM cAMP (Aa), 100 μM 6Bnz-cAMP (Ab) and 100

μM 8pCPT-2’-O-Me-cAMP (Ac) on 1 μM Ca2+-induced contraction, and the effects of 100 μM

6Bnz-cAMP (Ba) and 100 μM 8pCPT-2’-O-Me-cAMP (Bb) on Ca2+ sensitisation (100 μM GTP plus

10 μM CCh at fixed 1 μM [Ca2+]i) in α-toxin permeabilized human detrusor smooth muscle. Columns

show the relaxation effects of cAMP (filled column), 6Bnz-cAMP (slashed column) and

8pCPT-2’-O-Me-cAMP (open column) in C. Columns represent means ± SE. The relaxation effect of

6Bnz-cAMP was insignificant compared with the relaxation effect of cAMP (P = 0.32 on 1 μM

Ca2+-induced contraction; N = 5, n = 18, P = 0.075 on Ca2+ sensitisation; N = 4, n = 11). In contrast,

the relaxation effect of 8pCPT-2’-O-Me-cAMP was significantly different compared with the

relaxation effect of cAMP (P < 0.0001 on 1 μM Ca2+-induced contraction; N = 4, n = 17, P = 0.00017

on Ca2+ sensitisation; N = 5, n = 19).

This article is protected by copyright. All rights reserved.

Accepted Article

Figure 8

Western blot examination of exchange protein activated by cAMP (Epac)1, Epac2, Ras-related

protein 1 (Rap1) and Ras-related C3 botulinum toxin substrate 1 (Rac1) in human detrusor

smooth muscle. Various mouse organs (brain, pancreas, kidney and detrusor smooth muscle) were

used as positive and negative controls. Arrows indicate the expected molecular weights (MW) of

target proteins.

Figure 9

Schematic diagram illustrating plausible mechanisms underlying the relationship between cAMP and

a Ca2+ sensitisation-related kinase.; FSK, forskolin

This article is protected by copyright. All rights reserved.

Accepted Article

Table 1

chemical reagents

principle action

A-23187

Ca2+ ionophore

AF-DX116

selective muscarinic receptor 2 (M2) inhibitor

6-Bnz-cAMP

selective protein kinase A (PKA) activator

calyculin A

myosin light chain phosphatase (MLCP) inhibitor

carbachol (CCh)

selective muscarinic receptor agonist

cyclopiazonic acid (CPA)

inhibitor of endo-(or sarco-)plasmic reticulum Ca2+-ATPase

4-DAMP

selective muscarinic receptor 3 (M3) inhibitor

dibutyryl-cAMP

membrane-permeable cAMP

forskolin

adenylyl cyclase activator

GF-109203X

selective protein kinase C (PKC) inhibitor

H-89

selective protein kinase A (PKA) inhibitor

LY-294002

selective phosphoinositide 3 kinase (PI3K) inhibitor

8-pCPT-2’-O-Me-cAMP

selective Epac activator

phorbol 12, 13-dibutyrate (PDBu)

selective protein kinase C (PKC) activator

rolipram

selective phosphodiesterase (PDE) IV inhibitor

sphingosylphosphorylcholine (SPC)

selective rho kniase (ROK) activator

W-7

selective calmodulin inhibitor

Y-27632

selective rho kniase (ROK) inhibitor

This article is protected by copyright. All rights reserved.

Accepted Article

This article is protected by copyright. All rights reserved.

Accepted Article

This article is protected by copyright. All rights reserved.

Accepted Article

This article is protected by copyright. All rights reserved.

Accepted Article

This article is protected by copyright. All rights reserved.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る