リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gene Deletion Algorithms for Minimum Reaction Network Design by Mixed-Integer Linear Programming for Metabolite Production in Constraint-Based Models: gDel_minRN」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gene Deletion Algorithms for Minimum Reaction Network Design by Mixed-Integer Linear Programming for Metabolite Production in Constraint-Based Models: gDel_minRN

Tamura, Takeyuki Muto-fujita, Ai Tohsato, Yukako Kosaka, Tomoyuki 京都大学 DOI:10.1089/cmb.2022.0352

2023.05

概要

Genome-scale constraint-based metabolic networks play an important role in the simulation of growth-coupled production, which means that cell growth and target metabolite production are simultaneously achieved. For growth-coupled production, a minimal reaction-network-based design is known to be effective. However, the obtained reaction networks often fail to be realized by gene deletions due to conflicts with gene-protein-reaction (GPR) relations. Here, we developed gDel_minRN that determines gene deletion strategies using mixed-integer linear programming to achieve growth-coupled production by repressing the maximum number of reactions via GPR relations. The results of computational experiments showed that gDel_minRN could determine the core parts, which include only 30% to 55% of whole genes, for stoichiometrically feasible growth-coupled production for many target metabolites, which include useful vitamins such as biotin (vitamin B7), riboflavin (vitamin B2), and pantothenate (vitamin B5). Since gDel_minRN calculates a constraint-based model of the minimum number of gene-associated reactions without conflict with GPR relations, it helps biological analysis of the core parts essential for growth-coupled production for each target metabolite. The source codes, implemented in MATLAB using CPLEX and COBRA Toolbox, are available on https://github.com/MetNetComp/gDel-minRN.

この論文で使われている画像

参考文献

1. Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for

identifying gene knockout strategies for microbial strain optimization. Biotechnology and

bioengineering. 2003;84(6):647-57.

2. Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign

of microbial production systems. Genome research. 2004;14(11):2367-76.

3. Pharkya P, Maranas CD. An optimization framework for identifying reaction

activation/inhibition or elimination candidates for overproduction in microbial systems.

Metabolic engineering. 2006;8(1):1-13.

4. Patil KR, Rocha I, F¨orster J, Nielsen J. Evolutionary programming as a platform for in

silico metabolic engineering. BMC bioinformatics. 2005;6(1):308.

5. Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for

identifying all genetic manipulations leading to targeted overproductions. PLoS Comput

Biol. 2010;6(4):e1000744.

6. Rocha I, Maia P, Evangelista P, Vilac¸a P, Soares S, Pinto JP, et al. OptFlux: an open-source

software platform for in silico metabolic engineering. BMC systems biology.

2010;4(1):1-12.

7. Toya Y, Shimizu H. Flux analysis and metabolomics for systematic metabolic engineering

of microorganisms. Biotechnology advances. 2013;31(6):818-26.

8. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nature biotechnology.

2010;28(3):245-8.

9. Vieira V, Maia P, Rocha M, Rocha I. Comparison of pathway analysis and constraint-based

methods for cell factory design. BMC bioinformatics. 2019;20(1):1-15.

10. Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, et al. Large-scale

identification of genetic design strategies using local search. molecular systems biology.

2009;5(1):296.

11. Rockwell G, Guido NJ, Church GM. Redirector: designing cell factories by reconstructing

the metabolic objective. PLoS Comput Biol. 2013;9(1):e1002882.

12. Yang L, Cluett WR, Mahadevan R. EMILiO: a fast algorithm for genome-scale strain

design. Metabolic engineering. 2011;13(3):272-81.

13. Egen D, Lun DS. Truncated branch and bound achieves efficient constraint-based genetic

design. Bioinformatics. 2012;28(12):1619-23.

14. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic

data from evolved E. coli are consistent with computed optimal growth from genome-scale

models. Molecular systems biology. 2010;6(1):390.

15. Gu D, Zhang C, Zhou S, Wei L, Hua Q. IdealKnock: a framework for efficiently

identifying knockout strategies leading to targeted overproduction. Computational biology

and chemistry. 2016;61:229-37.

16. Ohno S, Shimizu H, Furusawa C. FastPros: screening of reaction knockout strategies for

metabolic engineering. Bioinformatics. 2014;30(7):981-7.

17. Tamura T. Grid-based computational methods for the design of constraint-based

parsimonious chemical reaction networks to simulate metabolite production: GridProd.

BMC bioinformatics. 2018;19(1):325.

18. von Kamp A, Klamt S. Growth-coupled overproduction is feasible for almost all

metabolites in five major production organisms. Nature communications. 2017;8:15956.

19. Machado D, Herrg˚ard MJ, Rocha I. Stoichiometric representation of gene–protein–reaction

associations leverages constraint-based analysis from reaction to gene-level phenotype

prediction. PLoS computational biology. 2016;12(10):e1005140.

20. Razaghi-Moghadam Z, Nikoloski Z. GeneReg: A constraint-based approach for design of

feasible metabolic engineering strategies at the gene level. Bioinformatics. 2020.

21. Rocha I, Maia P, Rocha M, Ferreira EC. OptGene: a framework for in silico metabolic

engineering. 2008.

22. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase

that computes Escherichia coli traits. Nature biotechnology. 2017;35(10):904-8.

23. Mo ML, Palsson BØ, Herrg˚ard MJ. Connecting extracellular metabolomic measurements

to intracellular flux states in yeast. BMC systems biology. 2009;3(1):37.

24. Orth JD, Fleming RM, Palsson BO. Reconstruction and use of microbial metabolic

networks: the core Escherichia coli metabolic model as an educational guide. EcoSal plus.

2010.

25. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and

analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nature

protocols. 2019;14(3):639-702.

26. King ZA, Dr¨ager A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO. Escher: a web

application for building, sharing, and embedding data-rich visualizations of biological

pathways. PLoS Comput Biol. 2015;11(8):e1004321.

27. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein

sequences. Protein Science. 2020;29(1):28-35.

28. Apaolaza I, Valcarcel LV, Planes FJ. gMCS: fast computation of genetic minimal cut sets in

large networks. Bioinformatics. 2019;35(3):535-7.

29. Mori Y, Noda S, Shirai T, Kondo A. Direct 1, 3-butadiene biosynthesis in Escherichia coli

via a tailored ferulic acid decarboxylase mutant. Nature communications. 2021;12(1):1-12.

30. Shimizu Y, Kuruma Y, Kanamori T, Ueda T. The PURE system for protein production. In:

Cell-Free Protein Synthesis. Springer; 2014. p. 275-84.

31. Yousofshahi M, Orshansky M, Lee K, Hassoun S. Probabilistic strain optimization under

constraint uncertainty. BMC systems biology. 2013;7(1):1-13.

32. Deng X. Complexity issues in bilevel linear programming. In: Multilevel optimization:

Algorithms and applications. Springer; 1998. p. 149-64.

33. Kim J, Reed JL, Maravelias CT. Large-scale bi-level strain design approaches and

mixed-integer programming solution techniques. PLoS One. 2011;6(9):e24162.

34. Tepper N, Shlomi T. Predicting metabolic engineering knockout strategies for chemical

production: accounting for competing pathways. Bioinformatics. 2010;26(4):536-43.

35. R¨ohl A, Bockmayr A. A mixed-integer linear programming approach to the reduction of

genome-scale metabolic networks. BMC bioinformatics. 2017;18(1):1-10.

36. Acevedo-Rocha C, Gronenberg L, Mack M, Commichau F, Genee H. Microbial cell

factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol.

2019;56:18-29.

37. Xiao F, Wang H, Shi Z, Huang Q, Huang L, Lian J, et al. Multi-level metabolic engineering

of Pseudomonas mutabilis ATCC31014 for efficient production of biotin. Metab Eng.

2020;61:406-15.

38. Booth I, Ferguson G, Miller S, Li C, Gunasekera B, Kinghorn S. Bacterial production of

methylglyoxal: a survival strategy or death by misadventure. Biochem Soc Trans.

2003;31(Pt 6):1406-8.

39. Niu W, Kramer L, Mueller J, Liu K, Guo J. Metabolic engineering of Escherichia coli for

the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metab Eng

Commun. 2019;8:e00082.

Table 1. (A) The flux distribution for each gene deletion strategy when GR is maximized under

the condition with GR≥1 and PR≥1. (B) The priority of each gene deletion strategy candidate and

the resulting flux distribution for the pessimistic case of PR at GR maximization.

KO

𝑔1

𝑔2

𝑔3

𝑔4

𝑔5

𝑔3 , 𝑔4

𝑣1

10

KO

𝑔3 , 𝑔4

𝑔3

𝑔4

𝑣2

𝑣3

priority

𝑣4

𝑣1

10

𝑣5 𝑣6

(A)

𝑣2

10

(B)

𝑣3

𝑣7

𝑣4

reactions

cannot satisfy GR≥1

cannot satisfy GR≥1

r2

cannot satisfy PR≥1

r2 , 𝑟 5

𝑣5

𝑣6

10

𝑣7

Table 2. Variables used in the MILP formalization in gDel minRN for the example of Fig.2(A).

Variables

𝑥 1 to 𝑥 7

𝑥 8 to 𝑥 12

𝑥 13

𝑥 14 to 𝑥17

Type

binary

binary

binary

Object

reactions 𝑟 1 to 𝑟 7

genes 𝑔1 to 𝑔5

internal term(s) (𝑔3 ∨ 𝑔4 )

whether repressed or not for 𝑟 2 , 𝑟 3 , 𝑟 4 , 𝑟 5

Table 3. The linear constraints for the GPR rules in Fig.2.

Boolean functions

𝐾𝑂3 = 𝑔1

𝑥13 = 𝑔3 ∨ 𝑔4

−→

−→

𝐾𝑂2 = 𝑔1 ∧ 𝑔2 ∧ 𝑔3

−→

𝐾𝑂4 = 𝑔2 ∧ 𝑔5

−→

𝐾𝑂5 = 𝑥13 ∧ 𝑔5

−→

Linear constraints

−𝑥8 + 𝑥15 = 0

𝑥 10 + 𝑥11 − 2𝑥13 ≤ 0

−𝑥10 − 𝑥11 + 𝑥 13 ≤ 0

−𝑥8 − 𝑥 9 − 𝑥10 + 3𝑥14 ≤ 0

𝑥 8 + 𝑥9 + 𝑥10 − 𝑥 14 ≤ 2

−𝑥9 − 𝑥 12 + 2𝑥 16 ≤ 0

𝑥 9 + 𝑥12 − 𝑥16 ≤ 1

−𝑥12 − 𝑥13 + 2𝑥17 ≤ 0

𝑥 12 + 𝑥 13 − 𝑥 17 ≤ 1

Table 4. The methods for representing Boolean functions by linear constraints.

Boolean functions

𝑦 = 𝑥1 ∧ 𝑥2 ∧ · · · ∧ 𝑥 𝑘

−→

𝑦 = 𝑥1 ∨ 𝑥2 ∨ · · · ∨ 𝑥 𝑘

−→

Linear constraints

−𝑥1 − . . . − 𝑥 𝑘 + 𝑘 𝑦 ≤ 0

𝑥1 + · · · + 𝑥 𝑘 − 𝑦 ≤ 𝑘 − 1

𝑥1 + · · · + 𝑥 𝑘 − 𝑘 𝑦 ≤ 0

−𝑥1 − · · · − 𝑥 𝑘 + 𝑦 ≤ 0

Table 5. The purpose and type of variables used in MILP for the general case of gDel minRN.

Variables

𝑥1 to 𝑥 𝑛𝑟

𝑥 𝑛𝑟+1 to 𝑥 𝑛𝑟+𝑛𝑔

𝑥 𝑛𝑟+𝑛𝑔+1 to 𝑥 𝑛𝑟+𝑛𝑔+𝑛𝑡

𝑥 𝑛𝑟+𝑛𝑔+𝑛𝑡+1 to 𝑥 𝑛𝑟+𝑛𝑔+𝑛𝑡+𝑛𝑘𝑜

Type

real

binary

binary

binary

For

reaction fluxes

genes

internal terms

reaction repressions

Table 6. The constraint-based models that were used in the computational experiments.

Model

#genes

#reactions

#metabolites

#target metabolites

#essential genes

iML1515

1516

2712

1877

1085

196

iMM904

905

1577

1226

773

110

e coli core

137

95

72

48

Table 7. The performance comparison between gDel minRN, GDLS, and optGene. Each gene

deletion strategy was considered as successful when the minimum GR and PR were 0.001 or more

at GR maximization.

Model

#success

#success ratio

Avg. #genes

Max #genes

Min #genes

Range

Time

iML1515 iMM904

441

105

40.6%

13.6%

555.2

291.85

571

314

539

275

35-38%

30-35%

7m35s

49s

(A) gDel minRN

e coli core

47

97.9%

69.47

73

66

48-54%

0.40s

Model

#success

#success ratio

Avg. #genes

Max #genes

Min #genes

Range

Time

iML1515 iMM904

0%

0%

39s

0.83s

(B) GDLS

e coli core

10.4%

68.4

71

66

48-52%

0.812s

Model

#success

#success ratio

Avg. #genes

Max #genes

Min #genes

Range

Avg. time

iML1515 iMM904

30

0%

3.9%

897.4

895

901

- 98-100%

20m3s

20m20s

(C) optGene

e coli core

22

45.8%

130.3

136

127

92-100%

20m6s

Table 8. Case study of gDel minRN performance for three vitamins.

Target

Pantothenate

Biotin

Riboflavin

#used genes

555

540

544

PR

0.7444

0.1313

0.1198

GR

0.2485

0.1493

0.1212

time

4m24s

5m8s

3m34s

(YDOXDWH

WDUJHWPHWDEROLWH

SURGXFWLRQUDWH35

0D[LPL]H

FHOOJURZWKUDWH

*5

6XE

QHWZRUN

2ULJLQDO

QHWZRUN

&RQVWUDLQW

EDVHGPRGHO

(A)

&RQVWUDLQWEDVHGPRGHO

*5 ˢPD[LPL]HQG

1XWULHQW

0LQLPXPQXPEHU

RIUHDFWLRQVPLQ51

YLDJHQHGHOHWLRQV

J'HO

35ˀWKUHVKROG

7KHHIIHFWLYHSDUWWKDWDFKLHYHVJURZWKFRXSOHGSURGXFWLRQ

7KH XQQHFHVVDU\ SDUW WR EH GHOHWHG

ˢPD[LPL]HVWWKHQXPEHURIVXSSUHVVHGUHDFWLRQV

(B)

Figure 1. (A) Problem setting of this study. The minimum PR of the target metabolite is evaluated

when the GR is maximized. (B) The idea of gDel minRN algorithm. The maximum number of

reactions are repressed via gene deletions for growth-coupled production.

Substrate uptake

m1

[0,10]

r1

g1ҍg2ҍg3

[0,10]

Cell growth

[0,10]

m2

r2

r6

r3

m3

[0,10]

[0,5]

g2ҍg5

Target production

[0,10]

r4

g1

GRLB=1

[0,5]

r7

m4

PRLB=1

r5

(g3Ҏg4) ҍ g5

(A)

ID

10

11

12

13

Gene KO

none

g1

g2

g3

g4

g5

g1, g2

..

best

worst

best

worst

best

worst

best

worst

best

worst

both

best

worst

..

𝑣1

10

10

10

10

10

10

..

𝑣2

10

10

10

..

(B)

𝑣3

..

𝑣4

..

𝑣5

..

𝑣6

10

10

10

10

10

..

𝑣7

10

..

Figure 2. (A) A toy example of the constraint-based model. Circles and rectangles represent

metabolites and reactions, respectively. Black and white rectangles are external and internal

reactions. 𝑟 1 , 𝑟 6 , and 𝑟 7 are the substrate uptake, cell growth, and target metabolite production

reactions. [𝛼, 𝛽] represents the lower and upper bounds of the reaction speeds. (B) The optimistic

and pessimistic flux distributions from the viewpoints of PR for each gene deletion strategy

when GR is maximized. Deleting 𝑔3 achieves growth-coupled production since PR≥PRLB and

GR≥GRLB are satisfied even for the pessimistic case of PR.

$HT

QU

QJQW

EHT

QJQW

QU

QNR

%HT

$ 

QNR







%E

XE

XE

OE

OE

E 

(A)

𝐵𝑒𝑞 =

𝐵= ­

x8

−1

x8 𝑥 9 𝑥 10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥 15 𝑥16 𝑥17 

−1 0 0 0 0 0 0 1 0 0

𝑥9

−1

−1

𝑥 10 𝑥 11 𝑥 12 𝑥13 𝑥14

0 −2 0

−1 −1 0

−1 0

0 −1

0 −1 0

0 −1 −1 0

𝑥15 𝑥16 𝑥17

0 0

0 0

0 ®

0 0

0 ®

0 0

0 ®

0 2

0 ®

0 −1 0 ®

0 0

2 ®

0 0 −1 ¬

(𝐵𝑏) 𝑇 = (0, 0, 0, 2, 0, 1, 0, 1)

(B)

Figure 3. (A) How to construct the components 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝐴, and 𝑏 for the MILP formalization

that gDel minRN searches a gene deletion strategy candidate. (B) 𝐵𝑒𝑞, 𝐵, 𝐵𝑏 for the example of

the network of Fig. 2(A).

Figure 4. The constructed pathway for biotin production. (A) Overview of the biotin synthesis

pathway from iML1515 classified into two pathways as upper and lower pathway. (B) Precise

flow of upper pathway, from glucose to malonyl-ACP. The number indicated with each arrows

shows the flux value of each reaction. The abbreviations are as follows; NADPH, Nicotinamide

adenine dinucleotide phosphate reduced form; UQ8, ubiquinone-8; ACP, acyl carrier protein; PEP,

phosphoenolpyruvate; OAA, oxaloacetate; PRPP, Phosphoribosyl diphosphate.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る