リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「StemPanTox: a fast and wide-target drug assessment system for tailor-made safety evaluations using personalized iPS cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

StemPanTox: a fast and wide-target drug assessment system for tailor-made safety evaluations using personalized iPS cells

Yamane, Junko Wada, Takumi Otsuki, Hironori Inomata, Koji Suzuki, Mutsumi Hisaki, Tomoka Sekine, Shuichi Kouzuki, Hirokazu Kobayashi, Kenta Sone, Hideko Yamashita, Jun K. Osawa, Mitsujiro Saito, Megumu K. Fujibuchi, Wataru 京都大学 DOI:10.1016/j.isci.2022.104538

2022.07.15

概要

An alternative model that reliably predicts human-specific toxicity is necessary because the translatability of effects on animal models for human disease is limited to context. Previously, we developed a method that accurately predicts developmental toxicity based on the gene networks of undifferentiated human embryonic stem (ES) cells. Here, we advanced this method to predict adult toxicities of 24 chemicals in six categories (neurotoxins, cardiotoxins, hepatotoxins, two types of nephrotoxins, and non-genotoxic carcinogens) and achieved high predictability (AUC = 0.90–1.00) in all categories. Moreover, we screened for an induced pluripotent stem (iPS) cell line to predict the toxicities based on the gene networks of iPS cells using transfer learning of the gene networks of ES cells, and predicted toxicities in four categories (neurotoxins, hepatotoxins, glomerular nephrotoxins, and non-genotoxic carcinogens) with high performance (AUC = 0.82–0.99). This method holds promise for tailor-made safety evaluations using personalized iPS cells.

この論文で使われている画像

参考文献

Abarbanel, J.M., Osiman, A., Frisher, S., Herishanu, Y., and OsimAn, A. (1987). Peripheral neuropathy and cerebellar syndrome associated with amiodarone therapy. Isr. J. Med. Sci. 23, 893–895.

Ali, B.H., Al-Qarawi, A.A., and Mousa, H.M. (2002). The effect of calcium load and the calcium channel blocker verapamil on gentamicin nephrotoxicity in rats. Food. Chem. Toxicol. 40, 1843–1847. https://doi.org/10.1016/s0278- 6915(02)00167-9.

Allam, A.A., El-Ghareeb, A.W., Abdul-Hamid, M., Bakery, A.E., Gad, M., and Sabri, M. (2010). Effect of prenatal and perinatal acrylamide on the biochemical and morphological changes in liver of developing albino rat. Arch. Toxicol. 84, 129–141. https://doi.org/10.1007/s00204-009- 0475-2.

Allen, T.E.H., Goodman, J.M., Gutsell, S., and Russell, P.J. (2016). A history of the molecular initiating event. Chem. Res. Toxicol. 29, 2060– 2070. https://doi.org/10.1021/acs.chemrestox. 6b00341.

Allwardt, V., Ainscough, A.J., Viswanathan, P., Sherrod, S.D., McLean, J.A., Haddrick, M., and Pensabene, V. (2020). Translational roadmap for the organs-on-a-chip industry toward broad adoption. Bioengineering 7, 112. https://doi.org/ 10.3390/bioengineering7030112.

Baroni, E.A., Costa, R.S., Volpini, R., and Coimbra, T.M. (1999). Sodium bicarbonate treatment reduces renal injury, renal production of transforming growth factor-beta, and urinary transforming growth factor-beta excretion in rats with doxorubicin-induced nephropathy. Am. J. Kidney. Dis. 34, 328–337. https://doi.org/10.1016/ s0272-6386(99)70363-x.

Becker, R.A. (2019). New approach methodologies: the brave new world in toxicology & risk assessment. https://www. toxicology.org/groups/rc/ncac/docs/06-Becker. pdf.

Boelaert, J., Schurgers, M., Matthys, E., Daneels, R., van Peer, A., De Beule, K., Woestenborghs, R., Heykants, J., and vAn Peer, A. (1988). Itraconazole pharmacokinetics in patients with renal dysfunction. Antimicrobial agents and chemotherapy 32, 1595–1597. https://doi.org/10. 1128/aac.32.10.1595.

Cappon, G.D., Fleeman, T.L., Cook, J.C., and Hurtt, M.E. (2005). Combined treatment potentiates the developmental toxicity of ibuprofen and acetazolamide in rats. Drug. Chem. Toxicol. 28, 409–421. https://doi.org/10. 1080/01480540500262805.

Carter, B.S., and Stewart, J.M. (1989). Valproic acid prenatal exposure. Association with lipomyelomeningocele. Clinic. 28, 81–85. https:// doi.org/10.1177/000992288902800205.

Clements, M., Millar, V., Williams, A.S., and Kalinka, S. (2015). Bridging functional and structural cardiotoxicity assays using human embryonic stem cell-derived cardiomyocytes for a more comprehensive risk assessment. Toxicol. Sci. 148, 241–260. https://doi.org/10.1093/toxsci/ kfv180.

Colombo, C., Crosignani, A., Alicandro, G., Zhang, W., Biffi, A., Motta, V., Corti, F., and Setchell, K.D.R. (2016). Long-Term ursodeoxycholic acid therapy does not alter lithocholic acid levels in patients with cystic fibrosis with associated liver disease. J. Pediatr. 177, 59–65.e1. https://doi.org/10.1016/j.jpeds. 2016.05.008.

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20, 273–297. https://doi. org/10.1007/bf00994018.

Doherty, K.R., Wappel, R.L., Talbert, D.R., Trusk, P.B., Moran, D.M., Kramer, J.W., Brown, A.M., Shell, S.A., and Bacus, S. (2013). Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol. Appl. Pharmacol. 272, 245–255. https:// doi.org/10.1016/j.taap.2013.04.027.

Easley, C.A. (2019). Induced pluripotent stem cells (iPSCs) in developmental toxicology. Methods. Mol. Biol. 1965, 19–34. https://doi.org/ 10.1007/978-1-4939-9182-2_3.

Ekins, S. (2014). Progress in computational toxicology. J. Pharmacol. Toxicol. Methods. 69, 115–140. https://doi.org/10.1016/j.vascn.2013. 12.003.

El-Tanbouly, D.M., Wadie, W., and Sayed, R.H. (2017). Modulation of TGF-Iˆ2/Smad and ERK signaling pathways mediates the anti-fibrotic effect of mirtazapine in mice. Toxicol. Appl. Pharmacol. 329, 224–230. https://doi.org/10. 1016/j.taap.2017.06.012.

Ellinger-Ziegelbauer, H., Stuart, B., Wahle, B., Bomann, W., and Ahr, H.J. (2005). Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat. Res. Fund Mol. Mech. Mutagen 575, 61–84. https:// doi.org/10.1016/j.mrfmmm.2005.02.004.

Epskamp, S., and Fried, E.I. (2018). A tutorial on regularized partial correlation networks. Psychol. Methods. 23, 617–634. https://doi.org/10.1037/ met0000167.

Ferguson, S.A., and Paule, M.G. (1992). Acute effects of chlorpromazine in a monkey operant behavioral test battery. Pharmacol. Biochem. Behav. 42, 333–341. https://doi.org/10.1016/ 0091-3057(92)90536-o.

Fickert, P., Fuchsbichler, A., Marschall, H.U., Wagner, M., Zollner, G., Krause, R., Zatloukal, K., Jaeschke, H., Denk, H., and Trauner, M. (2006). Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am. J. Pathol. 168, 410–422. https://doi. org/10.2353/ajpath.2006.050404.

Franzosa, J.A., Bonzo, J.A., Jack, J., Baker, N.C., Kothiya, P., Witek, R.P., Hurban, P., Siferd, S., Hester, S., Shah, I., et al. (2021). High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. NPJ Syst Biol Appl 7, 7. https://doi.org/10.1038/s41540-020-00166-2.

Goodall, C.R. (1991). Graphical models in applied multivariate statistics. Technometrics 33, 476–478. https://doi.org/10.1080/00401706.1991. 10484880.

Grimm, D. (2019). EPA plan to end animal testing splits scientists. Science (American Association for the Advancement of Science) 365, 1231. https://doi.org/10.1126/science.365.6459.1231.

Hendry, P.J., Taichman, G.C., Taichman, S.J., and Keon, W.J. (1988). Human myocardial responses to antibiotics: gentamicin, tobramycin and cephalothin. Can. J. Cardiol. 4, 219–222.

Hirose, M., Masuda, A., Hasegawa, R., Wada, S., and Ito, N. (1990). Regression of butylated hydroxyanisole (BHA)-induced hyperplasia but not dysplasia in the forestomach of hamsters. Carcinogenesis 11, 239–244. https://doi.org/10. 1093/carcin/11.2.239.

Humes, H.D., Jackson, N.M., O’Connor, R.P., Hunt, D.A., and White, M.D. (1985). Pathogenetic mechanisms of nephrotoxicity: insights into cyclosporine nephrotoxicity. Transplant. Proc. 17, 51–62.

Jordan, B., Pasquier, Y., Schnider, A., and Schnider, A. (2004). Neurological improvement and rehabilitation potential following toxic myelopathy due to intrathecal injection of doxorubicin. Spinal. Cord. 42, 371–373. https:// doi.org/10.1038/sj.sc.3101592.

Kameoka, S., Babiarz, J., Kolaja, K., and Chiao, E. (2014). A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol. Sci. 137, 76–90. https://doi.org/10.1093/toxsci/kft239.

Kim, T.W., Che, J.H., and Yun, J.W. (2019). Use of stem cells as alternative methods to animal experimentation in predictive toxicology. Regul. Toxicol. Pharmacol. 105, 15–29. https://doi.org/ 10.1016/j.yrtph.2019.03.016.

Kimura, T., Kuramochi, S., Katayama, T., Yoshikawa, T., Yamada, T., Ueda, Y., and Okada, Y. (2008). Amiodarone-related pulmonary mass and unique membranous glomerulonephritis in a patient with valvular heart disease: diagnostic pitfall and new findings. Pathol. Int. 58, 657–663. https://doi.org/10.1111/j.1440-1827.2008.02286. x.

Kitazawa, S. (1993). Studies on initiating activity of secondary bile acids for rat hepatocarcinogenesis. Hokkaido. Igaku. Zasshi. 68, 110–120.

Kitazawa, S., Denda, A., Tsutsumi, M., Tsujiuchi, T., Hasegawa, K., Tamura, K., Maruyama, H., and Konishi, Y. (1990). Enhanced preneoplastic liver lesion development under ’selection pressure’ conditions after administration of deoxycholic or lithocholic acid in the initiation phase in rats. Carcinogenesis 11, 1323–1328. https://doi.org/ 10.1093/carcin/11.8.1323.

Kleinstreuer, N.C., Smith, A.M., West, P.R., Conard, K.R., Fontaine, B.R., Weir-Hauptman, A.M., Palmer, J.A., Knudsen, T.B., Dix, D.J., Donley, E.L., and Cezar, G.G. (2011). Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol. Appl. Pharmacol. 257, 111–121. https://doi.org/10. 1016/j.taap.2011.08.025.

Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M.N., and Sergushichev, A. (2016). Fast gene set enrichment analysis. Preprint at bioRxiv. https://doi.org/10.1101/060012.

Kreft, B., de Wit, C., Marre, R., and Sack, K. (1991). Experimental studies on the nephrotoxicity of amphotericin B in rats. Journal 28, 271–281. https://doi.org/10.1093/jac/28.2.271.

Kugler, J., Tharmann, J., Chuva de Sousa Lopes, S.M., Kemler, R., Luch, A., and Oelgeschla¨ ger, M. (2015). A Bmp reporter transgene mouse embryonic stem cell model as a tool to identify and characterize chemical teratogens. Toxicol. Sci. 146, 374–385. https://doi.org/10.1093/toxsci/ kfv103.

Laschinski, G., Vogel, R., and Spielmann, H. (1991). Cytotoxicity test using blastocyst-derived euploid embryonal stem cells: a new approach to in vitro teratogenesis screening. Reprod. Toxicol. 5, 57–64. https://doi.org/10.1016/0890-6238(91) 90111-r.

Lee, R.Z., Hardiman, O., and O’Connell, P.G. (2002). Ibuprofen-induced aseptic meningoencephalitis. Rheumatology 41, 353–355. https://doi.org/10.1093/rheumatology/ 41.3.353.

Lin, Z., and Will, Y. (2012). Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol. Sci. 126, 114–127. https://doi.org/ 10.1093/toxsci/kfr339.

LoPachin, R.M., Ross, J.F., Reid, M.L., Das, S., Mansukhani, S., and Lehning, E.J. (2002). Neurological evaluation of toxic axonopathies in rats: acrylamide and 2, 5-hexanedione. Neurotoxicology 23, 95–110. https://doi.org/10. 1016/s0161-813x(02)00003-7.

Low, L.A., Mummery, C., Berridge, B.R., Austin, C.P., and Tagle, D.A. (2021). Organs-on-chips: into the next decade. Nat. Rev. Drug. Discov. 20, 345–361. https://doi.org/10.1038/s41573-020-0079-3.

Luz, A.L., and Tokar, E.J. (2018). Pluripotent stem cells in developmental toxicity testing: a review of methodological advances. Toxicol. Sci. 165, 31–39. https://doi.org/10.1093/toxsci/kfy174.

Maheut-Bosser, A., Brembilla-Perrot, B., Hanesse, B., Piffer, I., Paille, F., and MAheut- Bosser, A. (2006). Cognitive impairment induced by digoxin intake in patients older than 65 years. Ann. Cardiol. Angeiol. 55, 246–248. https://doi. org/10.1016/j.ancard.2006.01.001.

Marasco, W.A., Gikas, P.W., Azziz-Baumgartner, R., Hyzy, R., Eldredge, C.J., and Stross, J. (1987). Ibuprofen-associated renal dysfunction. Pathophysiologic mechanisms of acute renal failure, hyperkalemia, tubular necrosis, and proteinuria. Arch. Intern. Med. 147, 2107–2116. https://doi.org/10.1001/archinte.147.12.2107.

Matsuda, M., Yamanaka, Y., Uemura, M., Osawa, M., Saito, M.K., Nagahashi, A., Nishio, M., Guo, L., Ikegawa, S., Sakurai, S., et al. (2020). Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129. https://doi.org/10.1038/s41586-020-2144-9.

McGovern, B., Garan, H., and Ruskin, J.N. (1986). Precipitation of cardiac arrest by verapamil in patients with Wolff-ParkinsonWhite syndrome. Ann. Intern. Med. 104, 791. https://doi.org/10. 7326/0003-4819-104-6-791.

Miller, L.W. (2002). Cardiovascular toxicities of immunosuppressive agents. Am. J. Transplant. 2, 807–818. https://doi.org/10.1034/j.1600-6143. 2002.20902.x.

Mizukami, S., Watanabe, Y., Nakajima, K., Hasegawa-Baba, Y., Jin, M., Yoshida, T., and Shibutani, M. (2017). Downregulation of TMEM70 in rat liver cells after hepatocarcinogen treatment related to the warburg effect in hepatocarcino- genesis producing GST-P-expressing prolifera- tive lesions. Toxicol. Sci. 159, 211–223. https:// doi.org/10.1093/toxsci/kfx131.

Mladosievicova, B., Foltinova´ , A., Petra´ sova´ , H., Petra´ sova´ , H., Bernadic, M., Hulı´n, I., Bernadic, M., Hulı´n, I., and Foltinova, A. (2001). Signal- averaged electrocardiography in survivors of Hodgkin’s disease treated with and without dexrazoxane. Neoplasma 48, 61–65.

Nakatsuji, N. (2005). Establishment and manipulation of monkey and human embryonic stem cell lines for biomedical research. Ernst. Schering. Res. Found. Workshop. 54, 15–26. https://doi.org/10.1007/3-540-37644-5_2.

New Approach Methods Work Plan: Reducing Use of Animals in Chemical Testing (U.S. Environmental Protection Agency). https://www. epa.gov/.

Ohno, I. (2004). Drug induced nephrotic syndrome. Nihon Rinsho 62, 1919–1924.

Oketch-Rabah, H.A., Roe, A.L., Rider, C.V., Bonkovsky, H.L., Giancaspro, G.I., Navarro, V., Paine, M.F., Betz, J.M., Marles, R.J., Casper, S., et al. (2020). United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep 7, 386–402. https://doi.org/10.1016/j.toxrep.2020.02.008.

Okuyan, H., and Altin, C. (2013). Heart failure induced by itraconazole. Indian J. Pharmacol. 45, 524. https://doi.org/10.4103/0253-7613.117751.

Ozkok, A., and Edelstein, C.L. (2014). Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res. Int. 2014, 967826. https://doi.org/10.1155/2014/967826.

Perel, P., Roberts, I., Sena, E., Wheble, P., Briscoe, C., Sandercock, P., Macleod, M., Mignini, L.E., Jayaram, P., and Khan, K.S. (2007). Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 334, 197. https://doi.org/10.1136/ bmj.39048.407928.be.

Pilling, R.F., Sabri, K., and Chaudhuri, P.R. (2005). Non-traumatic sixth nerve palsy in a young patient. Strabismus 13, 11–13. https://doi.org/10. 1080/09273970590890930.

Qu, W., Crizer, D.M., DeVito, M.J., Waidyanatha, S., Xia, M., Houck, K., and Ferguson, S.S. (2021). Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. Toxicol. Vitro 73, 105109. https://doi.org/10.1016/j.tiv. 2021.105109.

Raza, M., al-Shabanah, O.A., al-Bekairi, A.M., and Qureshi, S. (2000). Pathomorphological changes in mouse liver and kidney during prolonged valproate administration. Int. J. Tissue. React. 22, 15–21.

Rea, T.D., Siscovick, D.S., Psaty, B.M., Pearce, R.M., Raghunathan, T.E., Whitsel, E.A., Cobb, L.A., Weinmann, S., Anderson, G.D., Arbogast, P., and Lin, D. (2003). Digoxin therapy and the risk of primary cardiac arrest in patients with congestive heart failure. J. Clin. Epidemiol. 56, 646–650. https://doi.org/10.1016/s0895-4356(03)00075-1.

Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science (American Association for the Advancement of Science) 293, 1089–1093. https://doi.org/10.1126/science.1063443.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). Limma powers differential expression analyses for RNA- sequencing and microarray studies. Nucleic. Acids. Res. 43, e47. https://doi.org/10.1093/nar/ gkv007.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616.

Ruuskanen, I., Kilpela¨ inen, H.O., and Riekkinen, P.J. (2009). Side effects of sodium valproate during long-term treatment in epilepsy. Acta. Neurol. Scand. 60, 125–128. https://doi.org/10. 1111/j.1600-0404.1979.tb02959.x.

Saito, K., Daitoku, K., Fukunaga, H., Matsuoka, T., Biroh, S., Kakei, M., Kashima, T., and Tanaka, H. (1985). Chlorpromazine-induced cardiomyopathy in rats. Heart. Vessels. 1, 283–285. https://doi.org/ 10.1007/bf02072410.

Scholz, G., Genschow, E., Pohl, I., Bremer, S., Paparella, M., Raabe, H., Southee, J., and Spielmann, H. (1999). Prevalidation of the embryonic stem cell test (EST) - a new in vitro embryotoxicity test. Toxicol. Vitro 13, 675–681. https://doi.org/10.1016/s0887-2333(99)00046-6.

Schulpen, S.H.W., Theunissen, P.T., Pennings, J.L., and Piersma, A.H. (2015). Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure. Reprod. Toxicol. 56, 77–86. https://doi. org/10.1016/j.reprotox.2015.06.043.

Schultz, T.W. (1999). Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis. Chem. Res. Toxicol. 12, 1262–1267. https://doi.org/10.1021/tx9900730.

Seiler, A.E.M., and Spielmann, H. (2011). The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat. Protoc. 6, 961–978. https://doi.org/10.1038/nprot.2011.348.

Seong, J., Han, K.H., Park, Y.N., Nam, S.H., Kim, S.H., Keum, W.S., and Kim, K.S. (2003). Lethal hepatic injury by combined treatment of radiation plus chemotherapy in rats with thioacetamide- induced liver cirrhosis. Int. J. Radiat. Oncol. Biol. Phys. 57, 282–288. https://doi.org/10.1016/s0360- 3016(03)00540-6.

Sha, S.H., and Schacht, J. (1999). Salicylate attenuates gentamicin-induced ototoxicity. Lab. Invest. 79, 807–813.

Sorich, M.J., Rowland, A., Kichenadasse, G., Woodman, R.J., and Mangoni, A.A. (2016). Risk factors of proteinuria in renal cell carcinoma patients treated with VEGF inhibitors: a secondary analysis of pooled clinical trial data. British journal of cancer 114, 1313–1317. https:// doi.org/10.1038/bjc.2016.147.

Srinivasa, V., Gerner, P., Haderer, A., Abdi, S., Jarolim, P., and Wang, G.K. (2003). The relative toxicity of amitriptyline, bupivacaine, and levobupivacaine administered as rapid infusions in rats. Anesthesia 97, 91–95. https://doi.org/10. 1213/01.ane.0000065600.15574.ab.

Sudoh, Y., Desai, S.P., Haderer, A.E., Sudoh, S., Gerner, P., Anthony, D.C., Girolami, U.D., Wang, G.K., HAderer, A., and Degirolami, U. (2004). Neurologic and histopathologic evaluation after high-volume intrathecal amitriptyline. Reg. Anesth. Pain. Med. 29, 434–440. https://doi.org/ 10.1016/j.rapm.2004.06.008.

Suzuki, N., Ando, S., Yamashita, N., Horie, N., and Saito, K. (2011). Evaluation of novel high- throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Toxicol. Sci. 124, 460–471. https://doi.org/10.1093/toxsci/kfr250.

Takahashi, H., Qin, X.Y., Sone, H., and Fujibuchi, W. (2018). Stem cell-based methods to predict developmental chemical toxicity. Methods Mol. Biol. 1800, 475–483. https://doi.org/10.1007/978- 1-4939-7899-1_21.

Topical Scientific Workshop - New Approach Methodologies in Regulatory Science (2016), 19- 20 April 2016 j Helsinki, Finland. https://echa. europa.eu/view-article/-/journal_content/title/ topical-scientific-workshop-new-approach- methodologies-in-regulatory-science.

Uibel, F., Mu¨ hleisen, A., Ko¨ hle, C., Weimer, M., Stummann, T.C., Bremer, S., and Schwarz, M. (2010). ReProGlo: a new stem cell-based reporter assay aimed to predict embryotoxic potential of drugs and chemicals. Reprod. Toxicol. 30, 103–112. https://doi.org/10.1016/j.reprotox. 2009.12.002.

Vapnik, V. (2006). Estimation of Dependences Based on Empirical Data (Springer Science).

Welch, M.D., DePace, A.H., Verma, S., Iwamatsu, A., and Mitchison, T.J. (1997). The human arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384. https://doi.org/10.1083/jcb.138.2.375.

West, P.R., Weir, A.M., Smith, A.M., Donley, E.L.R., and Cezar, G.G. (2010). Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol. Appl. Pharmacol. 247, 18–27. https://doi. org/10.1016/j.taap.2010.05.007.

Xie, Y., Nishi, S., Iguchi, S., Imai, N., Sakatsume, M., Saito, A., Ikegame, M., Iino, N., Shimada, H., Ueno, M., et al. (2001). Expression of osteopontin in gentamicin-induced acute tubular necrosis and its recovery process. Kidney Int. 59, 959–974. https://doi.org/10.1046/j.1523-1755.2001. 059003959.x.

Yamane, J., Aburatani, S., Imanishi, S., Akanuma, H., Nagano, R., Kato, T., Sone, H., Ohsako, S., and Fujibuchi, W. (2016). Prediction of developmental chemical toxicity based on gene networks of human embryonic stem cells. Nucleic acids research 44, 5515–5528. https://doi.org/10.1093/ nar/gkw450.

Zhang, Y., Xu, Y.Y., Sun, W.J., Zhang, M.H., Zheng, Y.F., Shen, H.M., Yang, J., and Zhu, X.Q. (2016). FBS or BSA inhibits EGCG induced cell death through covalent binding and the reduction of intracellular ROS production. BioMed Res. Int. 2016, 1–8. https://doi.org/10. 1155/2016/5013409.

参考文献をもっと見る