リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Vγ5Vδ1 TCR signaling is required to different extents for embryonic versus postnatal development of DETCs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Vγ5Vδ1 TCR signaling is required to different extents for embryonic versus postnatal development of DETCs

Sudo, Koichi Todoroki, Takero Ka, Yuyo Takahara, Kazuhiko 京都大学 DOI:10.1093/intimm/dxac001

2022.05

概要

γδ T cells expressing Vγ5Vδ1 TCR originally develop in the embryonic thymus and migrate to the epidermis, forming dendritic epidermal T cells (DETCs) throughout life. It is thought that a TCR signal is essential for their development; e.g., lack of TCR signal-transducer ZAP70 significantly decreases DETC numbers. On the other hand, lack of ZAP70 does not affect Vγ5Vδ1⁺ T cells in the embryonic thymus; thus, the involvement of TCR signaling remains elusive. Here, we used SKG mice with attenuated TCR signaling rather than gene-knockout mice. In SKG mice, Vγ5+ T cells showed a marked decrease [10% of wild-type (WT)] in adult epidermis; however, there was just a moderate decrease (50% of WT) in the embryonic thymus. In early postnatal epidermis in SKG mice, substantial numbers of Vγ5⁺ T cells were observed (50% of WT). Their activation markers including CD122, a component of the IL-15 receptor indispensable for DETC proliferation, were comparable to those of WT. However, the Vγ5⁺ T cells in SKG mice did not proliferate and form DETCs thereafter. Furthermore, in SKG/+ mice, the number of thymic Vγ5Vδ1⁺ T cells increased, compared to SKG mice; however, the number of DETCs remained significantly lower than in WT, similar to SKG mice. Our results suggest that signaling via Vγ5Vδ1 TCR is indispensable for DETC development, with distinct contributions to embryonic development and postnatal proliferation.

参考文献

1 Hayday, A., Saito, H., Gillies, S., et al. 1985. Structure, organization, and somatic rearrangement of T cell gamma genes. Cell 40:259.

2 Garman, R., Doherty, P., and Raulet, D. 1986. Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45:733.

3 Heilig, J. S. and Tonegawa, S. 1986. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322:836.

4 Vantourout, P. and Hayday, A. 2013. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13:88.

5 Girardi, M., Oppenheim, D. E., Steele, C. R., et al. 2001. Regulation of cutaneous malignancy by γδ T cells. Science 294:605.

6 Jameson, J., Ugarte, K., Chen, N., et al. 2002. A role for skin γδ T cells in wound repair. 637 Science 296:747.

7 Strid, J., Roberts, S. J., Filler, R. B., et al. 2008. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 9:146.

8 Nielsen, M. M., Witherden, D. A., and Havran, W. L. 2017. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17:733.

9 Crawford, G., Hayes, M., Seoane, R., et al. 2018. Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response. Nat. Immunol. 19:859.

10 Havran, W. L. and Allison, J. P. 1988. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335:443.

11 Havran, W. and Allison, J. 1990. Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors. Nature 344:68.

12 Boyden, L. M., Lewis, J. M., Barbee, S. D., et al. 2008. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40:656.

13 Elbe, A., Tschachler, E., Steiner, G., et al. 1989. Maturational steps of bone marrow- derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period. J. Immunol. 143:2431.

14 Correa, I., Bix, M., Liao, N., et al. 1992. Most γδ T cells develop normally in β2- microglobulin-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 89:653.

15 Bigby, M., Markowitz, J., Bleicher, P., et al. 1993. Most γδ T cells develop normally in the absence of MHC class II molecules. J. Immunol. 151:4465.

16 Xiong, N., Kang, C., and Raulet, D. H. 2004. Positive selection of dendritic epidermal γδ T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 21:121.

17 Mallick-Wood, C. A., Lewis, J. M., Richie, L. I., et al. 1998. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279:1729.

18 Hara, H., Kishihara, K., Matsuzaki, G., et al. 2000. Development of dendritic epidermal T cells with a skewed diversity of γδTCRs in Vδ1-deficient mice. J. Immunol. 165:3695.

19 Kadlecek, T. A., van Oers, N. S., Lefrancois, L., et al. 1998. Differential requirements for ZAP-70 in TCR signaling and T cell development. J. Immunol. 161:4688.

20 Endo, Y., Ishikawa, O., and Negishi, I. 2005. Zeta-chain-associated protein-70 molecule is essential for the proliferation and the final maturation of dendritic epidermal T cells. Exp. Dermatol. 14:188.

21 Muro, R., Nitta, T., Nakano, K., et al. 2018. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J. Clin. Invest. 128:415.

22 Lewis, J. M., Girardi, M., Roberts, S. J., et al. 2006. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 7:843.

23 Turchinovich, G. and Hayday, A. C. 2011. Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17- secreting gammadelta T cells. Immunity 35:59.

24 Noraz, N., Schwarz, K., Steinberg, M., et al. 2000. Alternative antigen receptor (TCR) signaling in T cells derived from ZAP-70-deficient patients expressing high levels of Syk. J. Biol. Chem. 275:15832.

25 Gelfand, E., Weinberg, K., Mazer, B., et al. 1995. Absence of ZAP-70 prevents signaling through the antigen receptor on peripheral blood T cells but not on thymocytes. J. Exp. Med. 182:1057.

26 Toyabe, S., Watanabe, A., Harada, W., et al. 2001. Specific immunoglobulin E responses in ZAP-70-deficient patients are mediated by Syk-dependent T-cell receptor signalling. Immunology 103:164.

27 Enyedy, E., Nambiar, M., Liossis, S., et al. 2001. Fcε receptor type I γ chain replaces the deficient T cell receptor ζ chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum. 44:1114.

28 Krishnan, S., Juang, Y., Chowdhury, B., et al. 2008. Differential expression and molecular associations of Syk in systemic lupus erythematosus T cells. J. Immunol. 181:8145.

29 Sakaguchi, N., Takahashi, T., Hata, H., et al. 2003. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426:454.

30 Wencker, M., Turchinovich, G., Di Marco Barros, R., et al. 2014. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat. Immunol. 15:80.

31 Bolyen, E., Rideout, J., Dillon, M., et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37:852.

32 Segata, N., Izard, J., Waldron, L., et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60.

33 Caux, C., Massacrier, C., Dubois, B., et al. 1999. Respective involvement of TGF-β and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. J. Leukoc. Biol. 66:781.

34 Schlickum, S., Sennefelder, H., Friedrich, M., et al. 2008. Integrin αE(CD103)β7 influences cellular shape and motility in a ligand-dependent fashion. Blood 112:619.

35 Witherden, D., Verdino, P., Rieder, S., et al. 2010. The Junctional Adhesion Molecule JAML Is a Costimulatory Receptor for Epithelial γδ T Cell Activation. Science 329:1205.

36 Whang, M., Guerra, N., and Raulet, D. 2009. Costimulation of dendritic epidermal γδ T cells by a new NKG2D ligand expressed specifically in the skin. J. Immunol. 182:4557.

37 Witherden, D., Watanabe, M., Garijo, O., et al. 2012. The CD100 Receptor Interacts With Its Plexin B2 Ligand to Regulate Epidermal γδ T Cell Function. Immunity 37:314.

38 Jameson, J. M., Cauvi, G., Witherden, D. A., and Havran, W. L. 2004. A keratinocyte- responsive γδ TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J. Immunol. 172:3573.

39 Mallick-Wood, C. A., Pao, W., Cheng, A. M., et al. 1996. Disruption of epithelial γδ T cell repertoires by mutation of the Syk tyrosine kinase. Proc. Natl. Acad. Sci. U. S. A. 93:9704.

40 Roberts, N. A., White, A. J., Jenkinson, W. E., et al. 2012. Rank signaling links the development of invariant γδ T cell progenitors and Aire+ medullary epithelium. Immunity 36:427.

41 Takaba, H. and Takayanagi, H. 2017. The mechanisms of T cell selection in the Thymus. Trends Immunol. 38:805.

42 Takeuchi, Y., Hirota, K., and Sakaguchi, S. 2020. Impaired T cell receptor signaling and development of T cell-mediated autoimmune arthritis. Immunol. Rev. 294:164.

43 Azzam, H. S., Grinberg, A., Lui, K., et al. 1998. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188:2301.

44 Leclercq, G., Plum, J., Nandi, D., et al. 1993. Intrathymic differentiation of Vγ3 T cells. J. Exp. Med. 178:309.

45 Taniguchi, T. and Minami, Y. 1993. The IL-2/IL-2 receptor system: a current overview. 734 Cell 73:5.

46 Kawai, K., Suzuki, H., Tomiyama, K., et al. 1998. Requirement of the IL-2 receptor β chain for the development of Vγ3 dendritic epidermal T cells. J. Invest. Dermatol. 110:961.

47 De Creus, A., Van Beneden, K., Stevenaert, F., et al. 2002. Developmental and functional defects of thymic and epidermal Vγ3 cells in IL-15-deficient and IFN regulatory factor-1- deficient mice. J. Immunol. 168:6486.

48 Johnston, J., Bacon, C., Finbloom, D., et al. 1995. Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc. Natl. Acad. Sci. U. S. A. 92:8705.

49 Ribot, J. C., deBarros, A., Pang, D. J., et al. 2009. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol. 10:427.

50 Ivanov, I., McKenzie, B., Zhou, L., et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121.

51 Di Marco Barros, R., Roberts, N. A., Dart, R. J., Vantourout, P., et al. 2016. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell 167:203.

52 Tanaka, S., Maeda, S., Hashimoto, M., et al. 2010. Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. J. Immunol. 185:2295.

53 Yoshitomi, H., Sakaguchi, N., Kobayashi, K., et al. 2005. A role for fungal {beta}- glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201:949.

54 Rehaume, L., Mondot, S., Aguirre de Cárcer, D., et al. 2014. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 66:2780.

55 Naik, S., Bouladoux, N., Wilhelm, C., et al. 2012. Compartmentalized control of skin immunity by resident commensals. Science 337:1115.

56 Constantinides, M., Link, V., Tamoutounour, S., et al. 2019. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366.

57 Chan, A., van Oers, N., Tran, A., et al. 1994. Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling. J. Immunol. 152:4758.

58 Cheng, A., Rowley, B., Pao, W., et al. 1995. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378:303.

59 Turner, M., Mee, P. J., Costello, P. S., et al. 1995. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378:298.

60 Negishi, I., Motoyama, N., Nakayama, K., et al. 1995. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376:435.

61 Cheng, A., Negishi, I., Anderson, S., et al. 1997. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc. Natl. Acad. Sci. U. S. A. 94:9797.

62 Gong, Q., White, L., Johnson, R., et al. 1997. Restoration of thymocyte development and function in zap-70-/- mice by the Syk protein tyrosine kinase. Immunity 7:369.

63 de Jong, M., Vriend, L., Theelen, B., et al. 2010. C-type lectin Langerin is a β-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol. Immunol. 47:1216.

64 van Dalen, R., De La Cruz Diaz, J., Rumpret, M., et al. 2019. Langerhans Cells Sense Staphylococcus aureus Wall Teichoic Acid through Langerin To Induce Inflammatory Responses. mBio 10:e00330.

65 de Witte, L., Nabatov, A., Pion, M., et al. 2007. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med. 13:367.

66 Chodaczek, G., Papanna, V., Zal, M. A., and Zal, T. 2012. Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 13:272.

67 Hosokawa, H. and Rothenberg, E. 2020. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 21:162.

68 Silva-Santos, B., Pennington, D. J., and Hayday, A. C. 2005. Lymphotoxin-mediated regulation of γδ cell differentiation by αβ T cell progenitors. Science 307:925.

69 Chodaczek, G., Toporkiewicz, M., Zal, M., and Zal, T. 2018. Epidermal T Cell Dendrites Serve as Conduits for Bidirectional Trafficking of Granular Cargo. Front. Immunol. 9.

70 Komori, H. K., Witherden, D. A., Kelly, R., et al. 2012. Cutting edge: dendritic epidermal γδ T cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding. J. Immunol. 188:2972.

71 Kohlgruber, A., Gal-Oz, S., LaMarche, N., et al. 2018. γδ T cells producing interleukin- 17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19:464.

72 Sullivan, Z. A., Khoury-Hanold, W., Lim, J., et al. 2021. γδ T cells regulate the intestinal response to nutrient sensing. Science 371.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る