リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of nucleic acid therapeutics based on the control of their intracellular distribution」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of nucleic acid therapeutics based on the control of their intracellular distribution

Umemura, Keisuke 京都大学 DOI:10.14989/doctor.k24563

2023.03.23

概要

Endogenous and exogenous DNAs quickly disappear by nuclease digestion and cellular
uptake.8–10 Immune cells remove DNA derived from bacteria, viruses, and therapeutic DNAs.23,24 It is
important to elucidate the mechanism of DNA uptake in order to develop nucleic acid therapeutics. I
selected to use DNA nanostructures to investigate the cellular uptake mechanism because DNA
nanostructures with arbitrary sizes and DNA densities can be obtained by devising the nucleic acid
sequences.
DNA can self-assemble through Watson-Crick base pairing.25 These characteristics can be
used to create nanometer-sized DNA structures with arbitrary shapes.26,27 This approach, which is
called DNA nanotechnology, has been progressing rapidly in recent years. It was pioneered by Seeman
et al., who created DNA junctions and DNA lattices.28 Rothemund et al. developed a DNA origami
technology, in which a long single-stranded “scaffold” DNA and short “staple” DNAs are annealed
into a programmed shape by self-assembly.29 Furthermore, various nanostructured DNAs have been
developed.30,31
Previous results from our group showed that polypod-like nanostructured DNA, or
polypodna, consisting of three or more oligodeoxynucleotides (ODNs), were efficiently taken up by
various murine and human immune cells such as macrophages and dendritic cells.32–34 Cellular uptake
of polypodna has reported to be pod number-dependently. When unmethylated cytosine-phosphateguanine (CpG) DNA, which is a ligand of Toll-like receptor 9 (TLR9), was incorporated into
polypodna, the CpG DNA-mediated release of immunostimulatory cytokines from immune cells was
significantly increased. ...

この論文で使われている画像

参考文献

1.

Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery

systems. J Control Release. 2014;190:15-28.

2.

Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential.

Theranostics. 2016;6(9):1306-1323.

3.

Adepu S, Ramakrishna S, Costa-Pinto R, Oliveira AL. Controlled Drug Delivery Systems: Current

Status and Future Directions. Molecules. 2021;26(19):5905.

4.

Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat

Rev Drug Discov. 2019;18(3):175-196.

5.

Almeida B, Nag OK, Rogers KE, Delehanty JB, Trabocchi A, Lenci E. Recent Progress in

Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules. 2020;25(23):5672.

6.

Liu J, Pandya P, Afshar S. Therapeutic advances in oncology. Int J Mol Sci. 2021;22(4):1-41.

7.

Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies.

Nat Biomed Eng. 2021;5(9):951-967.

8.

Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016;44(14):65186548.

9.

Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications.

Adv Drug Deliv Rev. 2021;178:113834.

10.

Paunovska K, Loughrey D, Dahlman JE, Coulter WH. Drug delivery systems for RNA therapeutics.

Nat Rev Genet. 2022;23(5):265-280.

11.

Azad RF, Brown-Driver V, Buckheit RW, Anderson KP. Antiviral activity of a phosphorothioate

oligonucleotide complementary to human cytomegalovirus RNA when used in combination with

antiviral nucleoside analogs. Antiviral Res. 1995;28(2):101-111.

12.

Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR. Pegaptanib for neovascular

age-related macular degeneration. N Engl J Med. 2004;351(27):2805-16.

13.

Kastelein JJP, Wedel MK, Baker BF, et al. Potent Reduction of Apolipoprotein B and Low-Density

Lipoprotein Cholesterol by Short-Term Administration of an Antisense Inhibitor of Apolipoprotein

B. Circulation. 2006;114(16):1729-35.

14.

Nelson SF, Crosbie RH, Miceli MC, Spencer MJ. Emerging genetic therapies to treat Duchenne

muscular dystrophy. Curr Opin Neurol. 2009;22(5):532-538.

15.

Crooke ST, Geary RS. Clinical pharmacological properties of mipomersen (Kynamro), a second

generation antisense inhibitor of apolipoprotein B Keywords antisense inhibitor, familial

hypercholesterolaemia, LDL-cholesterol, mipomersen. Br J Clin Pharmacol. 2013;76(2):269-76.

16.

Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci.

2017;20(4):497-499.

84

17.

Jackson S, Lentino J, Kopp J, et al. Immunogenicity of a two-dose investigational hepatitis B

vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed

hepatitis B vaccine in adults. Vaccine. 2018;36(5):668-674.

18.

Adams D, Gonzalez-Duarte A, O’Riordan, et al. Patisiran, an RNAi Therapeutic, for Hereditary

Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):11-21.

19.

Nasir Majeed C, Ma CD, Xiao T, Rudnick S, Bonkovsky HL. Spotlight on Givosiran as a Treatment

Option for Adults with Acute Hepatic Porphyria: Design, Development, and Place in Therapy. Drug

Des Devel Ther. 2022;16:1827-1845.

20.

Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges.

Nat Rev Immunol. 2021;21(4):195-197.

21.

Yata T, Takahashi Y, Tan M, et al. Efficient amplification of self-gelling polypod-like structured

DNA by rolling circle amplification and enzymatic digestion. Sci Rep. 2015;5:14979.

22.

Ito K, Kariya M, Yasui K, Takahashi Y, Takakura Y. Development of Hydrophobic Interactionbased DNA Supramolecules as Efficient Delivery Carriers of CpG DNA to Immune cells. J Pharm

Sci. 2022;111(4):1133-1141.

23.

Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity

in vaccination. Nat Rev Immunol. 2012;12(7):479-491.

24.

Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase

cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34(46):5488-5494.

25.

Watson JD, Crick FHC. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic

Acid. Nature. 1953;171(4356):737-738.

26.

Fu Y, Wang X, Zhang J, Li W. Nanomaterials and nanoclusters based on DNA modulation. Curr

Opin Biotechnol. 2014;28:33-38.

27.

Linko V, Dietz H. The enabled state of DNA nanotechnology. Curr Opin Biotechnol.

2013;24(4):555-561.

28.

Seeman NC. Nucleic acid junctions and lattices. J Theor Biol. 1982;99(2):237-247.

29.

Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature.

2006;440(7082):297-302.

30.

Chhabra R, Sharma J, Liu Y, Rinker S, Yan H. DNA Self-assembly for Nanomedicine. Adv Drug

Deliv Rev. 2010;62(6):617-625.

31.

Linko V, Ora A, Kostiainen MA. DNA Nanostructures as Smart Drug-Delivery Vehicles and

Molecular Devices. Trends Biotechnol. 2015;33(10):586-594.

32.

Mohri K, Nishikawa M, Takahashi N, et al. Design and development of nanosized DNA assemblies

in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells.

ACS Nano. 2012;6(7):5931-5940.

33.

Uno S, Nishikawa M, Mohri K, et al. Efficient delivery of immunostimulatory DNA to mouse and

85

human immune cells through the construction of polypod-like structured DNA. Nanomedicine.

2014;10(4):765-774.

34.

Mohri K, Nagata K, Ohtsuki S, et al. Elucidation of the Mechanism of Increased Activity of

Immunostimulatory DNA by the Formation of Polypod-like Structure. Pharm Res.

2017;34(11):2362-2370.

35.

Maezawa T, Ohtsuki S, Hidaka K, et al. DNA density-dependent uptake of DNA origami-based

two-or three-dimensional nanostructures by immune cells. Nanoscale. 2020;12:14818.

36.

Kimura Y, Sonehara K, Kuramoto E, et al. Binding of oligoguanylate to scavenger receptors is

required for oligonucleotides to augment NK cell activity and induce IFN. J Biochem.

1994;116(5):991-994.

37.

Benimetskaya L, Loike JD, Khaled Z, et al. Mac-1 (CD11b/CD18) is an oligodeoxynucleotidebinding protein. Nat Med. 1997;3(4):414-420.

38.

Sirois CM, Jin T, Miller AL, et al. RAGE is a nucleic acid receptor that promotes inflammatory

responses to DNA. J Exp Med. 2014;211(5):1001-1001.

39.

Siess DC, Vedder CT, Merkens LS, et al. A human gene coding for a membrane-associated nucleic

acid-binding protein. J Biol Chem. 2000;275(43):33655-33662.

40.

Caminschi I, Meuter S, Heath WR. DEC-205 is a cell surface receptor for CpG oligonucleotides.

Oncoimmunology. 2013;2(3).

41.

Moseman AP, Moseman EA, Schworer S, et al. Mannose Receptor 1 Mediates Cellular Uptake and

Endosomal

Delivery

of

CpG-Motif

Containing

Oligodeoxynucleotides.

Immunol.

2013;191(11):5615-5624.

42.

Brown DA, Kang SH, Gryaznov SM, et al. Effect of phosphorothioate modification of

oligodeoxynucleotides on specific protein binding. J Biol Chem. 1994;269(43):26801-26805.

43.

Watanabe TA, Geary RS, Levin AA. Plasma Protein Binding of an Antisense Oligonucleotide

Targeting Human ICAM-1 (ISIS 2302). Oligonucleotides. 2006;16(2):169-180.

44.

Ohtsuki S, Takahashi Y, Inoue T, Takakura Y, Nishikawa M. Reconstruction of Toll-like receptor 9mediated responses in HEK-Blue hTLR9 cells by transfection of human macrophage scavenger

receptor 1 gene. Sci Rep. 2017;7(1):1-9.

45.

Sunagawa GA, Sumiyama K, Ukai-Tadenuma M, et al. Mammalian Reverse Genetics without

Crossing Reveals Nr3a as a Short-Sleeper Gene. Cell Rep. 2016;14(3):662-677.

46.

Latz E, Schoenemeyer A, Visintin A, et al. TLR9 signals after translocating from the ER to CpG

DNA in the lysosome. Nat Immunol. 2004;5(2):190-198.

47.

Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev

Immunol. 2013;13(9):621-634.

48.

Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010;140(6):805-820.

49.

Doi T, Higashino KI, Kurihara Y, et al. Charged collagen structure mediates the recognition of

86

negatively charged macromolecules by macrophage scavenger receptors. J Biol Chem.

1993;268(3):2126-2133.

50.

Baid K, Nellimarla S, Huynh A, et al. Direct binding and internalization of diverse extracellular

nucleic acid species through the collagenous domain of class A scavenger receptors. Immunol Cell

Biol. 2018;96(9):922-934.

51.

Matsumoto A, Naito M, Itakura H, et al. Human Macrophage Scavenger Receptors: Primary

Structure, Expression, and Localization in Atherosclerotic Lesions. Proc Natl Acad Sci U S A.

1990;87(23):9133-7.

52.

Gough PJ, Greaves DR, Gordon S. A naturally occurring isoform of the human macrophage

scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J

Lipid Res. 1998;39(3):531-543.

53.

Aguilar JC, Rodríguez EG. Vaccine adjuvants revisited. Vaccine. 2007;25(19):3752-3762.

54.

Zhu G, Liu Y, Yang X, et al. DNA-inorganic hybrid nanovaccine for cancer immunotherapy.

Nanoscale. 2016;8:6684.

55.

Chen W, Jiang M, Yu W, et al. CpG-Based Nanovaccines for Cancer Immunotherapy. Int J

Nanomedicine. 2021;16:5281-5299.

56.

Ribas A, Medina T, Kirkwood JM, et al. Overcoming PD-1 Blockade Resistance with CpG-A TollLike Receptor 9 Agonist Vidutolimod in Patients with Metastatic Melanoma. Cancer Discov.

2021;11(12):2998-3007.

57.

Zhang L, Zhu G, Mei L, et al. Self-Assembled DNA Immunonanoflowers as Multivalent CpG

Nanoagents. ACS Appl Mater Interfaces. 2015;7(43):24069-74.

58.

Roberto Mineo J, Vilanova M, Lang R, et al. CpG Oligodeoxynucleotides Induce Differential

Cytokine and Chemokine Gene Expression Profiles in Dapulian and Landrace Pigs. Front

Microbiol. 2016;7.

59.

Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert

Rev Vaccines. 2011;10(4):499-511.

60.

Nishikawa M, Ogawa K, Umeki Y, et al. Injectable, self-gelling, biodegradable, and

immunomodulatory DNA hydrogel for antigen delivery. J Control Release. 2014;180(1):25-32.

61.

Jackson S, Lentino J, Kopp J, et al. Immunogenicity of a two-dose investigational hepatitis B

vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed

hepatitis B vaccine in adults. Vaccine. 2018;36(5):668-674.

62.

Zhang H, Chen W, Gong K, Chen J. Nanoscale Zeolitic Imidazolate Framework-8 as Efficient

Vehicles for Enhanced Delivery of CpG Oligodeoxynucleotides. ACS Appl Mater Interfaces.

2017;9(37):31519-31525.

63.

Wei H, Zhao Z, Wang Y, Zou J, Lin Q, Duan Y. One-Step Self-Assembly of Multifunctional DNA

Nanohydrogels: An Enhanced and Harmless Strategy for Guiding Combined Antitumor Therapy.

87

ACS Appl Mater Interfaces. 2019;11(50):46479-46489.

64.

Ouyang X, Li J, Liu H, et al. Rolling Circle Amplification-Based DNA Origami Nanostructrures

for Intracellular Delivery of Immunostimulatory Drugs. Small. 2013;9(18):3082-3087.

65.

Ouyang X, Li J, Liu H, et al. Self-assembly of DNA-based drug delivery nanocarriers with rolling

circle amplification. Methods. 2014;67(2):198-204.

66.

Dembska A, Bielecka P, Juskowiak B. pH-Sensing fluorescence oligonucleotide probes based on

an i-motif scaffold: a review. Analytical Methods. 2017;9(43):6092-6106.

67.

Dong Y, Yang Z, Liu D. DNA Nanotechnology Based on i-Motif Structures. Acc Chem Res.

2014;47(6):1853-1860.

68.

Xu W, Huang Y, Zhao H, et al. DNA Hydrogel with Tunable pH-Responsive Properties Produced

by Rolling Circle Amplification. Chemistry. 2017;23(72):18276-18281.

69.

Padilla-Parra S, Matos PM, Kondo N, Marin M, Santos NC, Melikyan GB. Quantitative imaging

of endosome acidification and single retrovirus fusion with distinct pools of early endosomes. Proc

Natl Acad Sci U S A. 2012;109(43):17627-17632.

70.

Smith SA, Selby LI, Johnston APR, Such GK. The Endosomal Escape of Nanoparticles: Toward

More Efficient Cellular Delivery. Bioconjug Chem. 2019;30(2):263-272.

71.

Li T, Famulok M. I-Motif-Programmed Functionalization of DNA Nanocircles. J Am Chem Soc.

2013;135(4):1593-1599.

72.

Han DSC, Ni M, Chan RWY, et al. The Biology of Cell-free DNA Fragmentation and the Roles of

DNASE1, DNASE1L3, and DFFB. Am J Hum Genet. 2020;106(2):202-214.

73.

Chan MP, Onji M, Fukui R, et al. ARTICLE DNase II-dependent DNA digestion is required for

DNA sensing by TLR9. Nat Commun. 2015;6:5853.

74.

Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free

DNA in liquid biopsies. Science. 2021;372(6538).

75.

Lauková L, Konečná B, Janovičová ubica, Vlková B, Celec P. Deoxyribonucleases and Their

Applications in Biomedicine. Biomolecules. 2020;10(7):1036.

76.

Xu Y, Cheng M, Shang P, Yang Y. Role of IL‐6 in dendritic cell functions. J Leukoc Biol.

2022;111(3):695-709.

77.

Marcovecchio PM, Thomas G, Salek-Ardakani S. CXCL9-expressing tumor-associated

macrophages: new players in the fight against cancer. J Immunother Cancer. 2021;9(2):e002045.

78.

Eng NF, Bhardwaj N, Mulligan R, Diaz-Mitoma F. The potential of 1018 ISS adjuvant in hepatitis

B vaccines: HEPLISAV" review. Hum Vaccin Immunother. 2013;9(8):1661-1672.

79.

Garon EB, Spira AI, Johnson M, et al. A Phase Ib Open-Label, Multicenter Study of Inhaled DV281,

a TLR9 Agonist, in Combination with Nivolumab in Patients with Advanced or Metastatic Non–

small Cell Lung Cancer. Clin Cancer Res. 2021;27(16):4566-4573.

80.

Jain VV, Kitagaki K, Kline JN. CpG DNA and immunotherapy of allergic airway diseases. Clin

88

Exp Allergy. 2003;33(10):1330-1335.

81.

Liu W, Ota M, Tabushi M, Takahashi Y, Takakura Y. Development of allergic rhinitis

immunotherapy using antigen-loaded small extracellular vesicles. J Control Release.

2022;345:433-442.

82.

Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That

Activates the Type I Interferon Pathway. Science. 2013;339(6121):786-791.

83.

Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA

mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12(10):959-965.

84.

Takaoka A, Wang Z, Choi MK, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an

activator of innate immune response. Nature. 2007;448(7152):501-505.

85.

Unterholzner L, Keating SE, Baran M, et al. IFI16 is an innate immune sensor for intracellular

DNA. Nat Immunol. 2010;11(11):997-1004.

86.

Unterholzner L. The interferon response to intracellular DNA: Why so many receptors?

Immunobiology. 2013;218(11):1312-1321.

87.

Jiang M, Jiang M, Chen P, et al. cGAS-STING, an important pathway in cancer immunotherapy. J

Hematol Oncol. 2020;13(1).

88.

Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING agonists as cancer

therapeutics. Cancers (Basel). 2021;13(11).

89.

Zahid A, Ismail H, Li B, Jin T. Molecular and Structural Basis of DNA Sensors in Antiviral Innate

Immunity. Front Immunol. 2020;11:613039.

90.

Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling.

Nat Rev Mol Cell Biol. 2020;21(9):501-521.

91.

Ablasser A, Goldeck M, Cavlar T, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second

messenger that activates STING. Nature. 2013;498(7454):380-384.

92.

Yildiz S, Alpdundar E, Gungor B, et al. Enhanced immunostimulatory activity of cyclic

dinucleotides on mouse cells when complexed with a cell‐penetrating peptide or combined with

CpG. Eur J Immunol. 2015;45(4):1170-1179.

93.

Gogoi H, Mansouri S, Jin L. The Age of Cyclic Dinucleotide Vaccine Adjuvants. Vaccines (Basel).

2020;8(3):453.

94.

Taranejoo S, Liu J, Verma P, Hourigan K. A review of the developments of characteristics of PEI

derivatives for gene delivery applications. J Appl Polym Sci. 2015;132(25):42096.

95.

Petrovic M, Borchard G, Jordan O. Considerations for the delivery of STING ligands in cancer

immunotherapy. J Control Release. 2021;339:235-247.

96.

Li W. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug

and gene delivery. Adv Drug Deliv Rev. 2004;56(7):967-985.

97.

Nakase I, Kogure K, Harashima H, Futaki S. Application of a Fusiogenic Peptide GALA for

89

Intracellular Delivery. Methods Mol Biol. 2011;683:525-533.

98.

Morishita M, Takahashi Y, Nishikawa M, Ariizumi R, Takakura Y. Enhanced Class I Tumor Antigen

Presentation via Cytosolic Delivery of Exosomal Cargos by Tumor-Cell-Derived Exosomes

Displaying a pH-Sensitive Fusogenic Peptide. Mol Pharm. 2017;14(11):4079-4086.

99.

Hagino Y, Khalil IA, Kimura S, Kusumoto K, Harashima H. GALA-Modified Lipid Nanoparticles

for the Targeted Delivery of Plasmid DNA to the Lungs. Mol Pharm. 2021;18(3):878-888.

100.

Kawamoto Y, Liu W, Yum JH, et al. Enhanced Immunostimulatory Activity of Covalent DNA

Dendrons. ChemBioChem. 2022;23(4).

101.

Zinchuk V, Zinchuk O, Okada T. Quantitative Colocalization Analysis of Multicolor Confocal

Immunofluorescence Microscopy Images: Pushing Pixels to Explore Biological Phenomena. Acta

Histochem Cytochem. 2007;40(4):101-111.

102.

Renault K, Fredy JW, Renard PY, Sabot C. Covalent Modification of Biomolecules through

Maleimide-Based Labeling Strategies. Bioconjug Chem. 2018;29(8):2497-2513.

103.

Hansen RA, Märcher A, Gothelf KV. One-Step Conversion of NHS Esters to Reagents for SiteDirected Labeling of IgG Antibodies. Bioconjug Chem. 2022;33(10):1811-1817.

104.

Patel H, Tscheka C, Heerklotz H. Characterizing vesicle leakage by fluorescence lifetime

measurements. Soft Matter. 2009;5(15):2849.

105.

Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression

in primary macrophages from autoimmune mice. Nat Commun. 2017;8(1):750.

106.

Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. Tumor-Derived cGAMP

Triggers a STING-Mediated Interferon Response in Non-tumor Cells to Activate the NK Cell

Response. Immunity. 2018;49(4):754-763.e4.

107.

Corrales L, Glickman LH, McWhirter SM, et al. Direct Activation of STING in the Tumor

Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep.

2015;11(7):1018-1030.

108.

Jing W, McAllister D, Vonderhaar EP, et al. STING agonist inflames the pancreatic cancer immune

microenvironment and reduces tumor burden in mouse models. J Immunother Cancer.

2019;7(1):115.

109.

Harlin H, Meng Y, Peterson AC, et al. Chemokine Expression in Melanoma Metastases Associated

with CD8+ T-Cell Recruitment. Cancer Res. 2009;69(7):3077-3085.

110.

Henke E, Perk J, Vider J, et al. Peptide-conjugated antisense oligonucleotides for targeted inhibition

of a transcriptional regulator in vivo. Nat Biotechnol. 2008;26(1):91-100.

111.

Ming X, Alam MR, Fisher M, Yan Y, Chen X, Juliano RL. Intracellular delivery of an

antisense oligonucleotide via endocytosis of a G protein-coupled receptor. Nucleic Acids Res.

2010;38(19):6567-6576.

112.

Ämmälä C, Drury WJ, Knerr L, et al. Targeted delivery of antisense oligonucleotides to pancreatic

90

β-cells. Sci Adv. 2018;4(10).

91

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る