リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors.

Afshar Negar Argunhan Bilge パルハット マルダン 谷口 剛樹 坪内 英生 岩崎 博史 Negar Afshar Bilge Argunhan Maierdan Palihati Goki Taniguchi Hideo Tsubouchi Hiroshi Iwasaki 東京工業大学 DOI:https://doi.org/10.7554/elife.64131

2021.01.25

概要

Homologous recombination (HR) is essential for maintaining genome stability. Although Rad51 is the key protein that drives HR, multiple auxiliary factors interact with Rad51 to potentiate its activity. Here, we present an interdisciplinary characterization of the interactions between Rad51 and these factors. Through structural analysis, we identified an evolutionarily conserved acidic patch of Rad51. The neutralization of this patch completely abolished recombinational DNA repair due to defects in the recruitment of Rad51 to DNA damage sites. This acidic patch was found to be important for the interaction with Rad55-Rad57 and essential for the interaction with Rad52. Furthermore, biochemical reconstitutions demonstrated that neutralization of this acidic patch also impaired the interaction with Rad54, indicating that a single motif is important for the interaction with multiple auxiliary factors. We propose that this patch is a fundamental motif that facilitates interactions with auxiliary factors and is therefore essential for recombinational DNA repair.

この論文で使われている画像

参考文献

Ait Saada A, Lambert SAE, Carr AM. 2018. Preserving replication fork integrity and competence via the homologous recombination pathway. DNA Repair 71:135–147. DOI: https://doi.org/10.1016/j.dnarep.2018.08.017, PMID: 30220600

Akamatsu Y, Dziadkowiec D, Ikeguchi M, Shinagawa H, Iwasaki H. 2003. Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. PNAS 100:15770–15775. DOI: https://doi.org/10.1073/pnas.2632890100, PMID: 14663140

Akamatsu Y, Tsutsui Y, Morishita T, Siddique MS, Kurokawa Y, Ikeguchi M, Yamao F, Arcangioli B, Iwasaki H. 2007. Fission yeast Swi5/Sfr1 and Rhp55/Rhp57 differentially regulate Rhp51-dependent recombination outcomes. The EMBO Journal 26:1352–1362. DOI: https://doi.org/10.1038/sj.emboj.7601582, PMID: 17304215

Amelina H, Moiseeva V, Collopy LC, Pearson SR, Armstrong CA, Tomita K. 2016. Sequential and counterselectable cassettes for fission yeast. BMC Biotechnology 16:76. DOI: https://doi.org/10.1186/s12896-0160307-4, PMID: 27825338

Argunhan B, Murayama Y, Iwasaki H. 2017a. The differentiated and conserved roles of Swi5-Sfr1 in homologous recombination. FEBS Letters 591:2035–2047. DOI: https://doi.org/10.1002/1873-3468.12656, PMID: 28423184

Argunhan B, Leung WK, Afshar N, Terentyev Y, Subramanian VV, Murayama Y, Hochwagen A, Iwasaki H, Tsubouchi T, Tsubouchi H. 2017b. Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis. The EMBO Journal 36:2488–2509. DOI: https://doi.org/10.15252/ embj.201695895, PMID: 28694245

Argunhan B, Sakakura M, Afshar N, Kurihara M, Ito K, Maki T, Kanamaru S, Murayama Y, Tsubouchi H, Takahashi M, Takahashi H, Iwasaki H. 2020. Cooperative interactions facilitate stimulation of Rad51 by the Swi5-Sfr1 auxiliary factor complex. eLife 9:e52566. DOI: https://doi.org/10.7554/eLife.52566, PMID: 32204793

Chen LT, Ko TP, Chang YC, Lin KA, Chang CS, Wang AH, Wang TF. 2007. Crystal structure of the left-handed archaeal RadA helical filament: identification of a functional motif for controlling quaternary structures and enzymatic functions of RecA family proteins. Nucleic Acids Research 35:1787–1801. DOI: https://doi.org/10. 1093/nar/gkl1131, PMID: 17329376

Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453:489–494. DOI: https://doi.org/10.1038/nature06971, PMID: 18497818

Chen J, Villanueva N, Rould MA, Morrical SW. 2010. Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant. Nucleic Acids Research 38:4889–4906. DOI: https://doi. org/10.1093/nar/gkq209, PMID: 20371520

Chi P, Kwon Y, Moses DN, Seong C, Sehorn MG, Singh AK, Tsubouchi H, Greene EC, Klein HL, Sung P. 2009. Functional interactions of meiotic recombination factors Rdh54 and Dmc1. DNA Repair 8:279–284. DOI: https://doi.org/10.1016/j.dnarep.2008.10.012, PMID: 19028606 Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA. 2004. Crystal structure of a Rad51 filament. Nature Structural & Molecular Biology 11:791–796. DOI: https://doi.org/10.1038/nsmb795, PMID: 15235592

Costa SJ, Almeida A, Castro A, Domingues L, Besir H. 2013. The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Applied Microbiology and Biotechnology 97:6779–6791. DOI: https://doi.org/10.1007/s00253-012-4559-1, PMID: 23160981

Doe CL, Osman F, Dixon J, Whitby MC. 2004. DNA repair by a Rad22-Mus81-dependent pathway that is independent of Rhp51. Nucleic Acids Research 32:5570–5581. DOI: https://doi.org/10.1093/nar/gkh853, PMID: 15486206

Gasior SL, Wong AK, Kora Y, Shinohara A, Bishop DK. 1998. Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes & Development 12:2208–2221. DOI: https:// doi.org/10.1101/gad.12.14.2208, PMID: 9679065

Gasior SL, Olivares H, Ear U, Hari DM, Weichselbaum R, Bishop DK. 2001. Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis. PNAS 98:8411–8418. DOI: https://doi.org/10.1073/pnas.121046198, PMID: 11459983

Greene EC. 2016. DNA sequence alignment during homologous recombination. Journal of Biological Chemistry 291:11572–11580. DOI: https://doi.org/10.1074/jbc.R116.724807

Haruta N, Kurokawa Y, Murayama Y, Akamatsu Y, Unzai S, Tsutsui Y, Iwasaki H. 2006. The Swi5-Sfr1 complex stimulates Rhp51/Rad51- and Dmc1-mediated DNA strand exchange in vitro. Nature Structural & Molecular Biology 13:823–830. DOI: https://doi.org/10.1038/nsmb1136, PMID: 16921379

Hays SL, Firmenich AA, Berg P. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. PNAS 92:6925–6929. DOI: https://doi.org/10.1073/pnas.92.15. 6925, PMID: 7624345

Hentges P, Van Driessche B, Tafforeau L, Vandenhaute J, Carr AM. 2005. Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22:1013–1019. DOI: https:// doi.org/10.1002/yea.1291, PMID: 16200533

Hoffman CS, Wood V, Fantes PA. 2015. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe Model System. Genetics 201:403–423. DOI: https://doi.org/10.1534/genetics. 115.181503, PMID: 26447128

Hope JC, Maftahi M, Freyer GA. 2005. A postsynaptic role for Rhp55/57 that is responsible for cell death in Deltarqh1 mutants following replication arrest in Schizosaccharomyces pombe. Genetics 170:519–531. DOI: https://doi.org/10.1534/genetics.104.037598, PMID: 15802523

Howard-Flanders P, West SC, Stasiak A. 1984. Role of RecA protein spiral filaments in genetic recombination. Nature 309:215–220. DOI: https://doi.org/10.1038/309215a0, PMID: 6325943

Ito K, Murayama Y, Takahashi M, Iwasaki H. 2018. Two three-strand intermediates are processed during Rad51driven DNA strand exchange. Nature Structural & Molecular Biology 25:29–36. DOI: https://doi.org/10.1038/s41594-017-0002-8, PMID: 29323270

Ito K, Murayama Y, Kurokawa Y, Kanamaru S, Kokabu Y, Maki T, Mikawa T, Argunhan B, Tsubouchi H, Ikeguchi M, Takahashi M, Iwasaki H. 2020. Real-time tracking reveals catalytic roles for the two DNA binding sites of Rad51. Nature Communications 11:1–17. DOI: https://doi.org/10.1038/s41467-020-16750-3

Johnson RD, Symington LS. 1995. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Molecular and Cellular Biology 15:4843–4850. DOI: https://doi.org/10.1128/MCB. 15.9.4843, PMID: 7651402

Kagawa W, Arai N, Ichikawa Y, Saito K, Sugiyama S, Saotome M, Shibata T, Kurumizaka H. 2014. Functional analyses of the C-terminal half of the Saccharomyces cerevisiae Rad52 protein. Nucleic Acids Research 42:941–951. DOI: https://doi.org/10.1093/nar/gkt986, PMID: 24163251

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10:845–858. DOI: https://doi.org/10.1038/nprot.2015.053, PMID: 25950237

Khasanov FK, Savchenko GV, Bashkirova EV, Korolev VG, Heyer WD, Bashkirov VI. 1999. A new recombinational DNA repair gene from Schizosaccharomyces pombe with homology to Escherichia coli RecA. Genetics 152: 1557–1572. PMID: 10430583

Khasanov FK, Salakhova AF, Chepurnaja OV, Korolev VG, Bashkirov VI. 2004. Identification and characterization of the rlp1+, the novel Rad51 paralog in the fission yeast Schizosaccharomyces pombe. DNA Repair 3:1363–1374. DOI: https://doi.org/10.1016/j.dnarep.2004.05.010, PMID: 15336631

Kim WJ, Park EJ, Lee H, Seong RH, Park SD. 2002. Physical Interaction between Recombinational Proteins Rhp51 and Rad22 in Schizosaccharomyces pombe . Journal of Biological Chemistry 277:30264–30270. DOI: https://doi.org/10.1074/jbc.M202517200

Kurokawa Y, Murayama Y, Haruta-Takahashi N, Urabe I, Iwasaki H. 2008. Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators. PLOS Biology 6:e88. DOI: https://doi.org/10.1371/journal.pbio.0060088, PMID: 18416603

Lambert S, Carr AM. 2013. Replication stress and genome rearrangements: lessons from yeast models. Current Opinion in Genetics & Development 23:132–139. DOI: https://doi.org/10.1016/j.gde.2012.11.009, PMID: 23267817

Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713. DOI: https://doi.org/10. 1016/j.cell.2004.08.015, PMID: 15369670

Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer WD. 2011. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479:245–248. DOI: https://doi.org/10.1038/ nature10522, PMID: 22020281

Loidl J, Lorenz A. 2009. Analysis of Schizosaccharomyces pombe meiosis by nuclear spreading. Methods in Molecular Biology 558:15–36. DOI: https://doi.org/10.1007/978-1-60761-103-5_2, PMID: 19685316

Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC. 2009. Fbh1 limits Rad51-dependent recombination at blocked replication forks. Molecular and Cellular Biology 29:4742–4756. DOI: https://doi.org/10.1128/MCB. 00471-09, PMID: 19546232

Lu CH, Yeh HY, Su GC, Ito K, Kurokawa Y, Iwasaki H, Chi P, Li HW. 2018. Swi5-Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation. PNAS 115:E10059–E10068. DOI: https:// doi.org/10.1073/pnas.1812753115, PMID: 30297419

Martı´n V, Chahwan C, Gao H, Blais V, Wohlschlegel J, Yates JR, McGowan CH, Russell P. 2006. Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. The EMBO Journal 25:2564–2574. DOI: https://doi.org/10.1038/sj.emboj.7601141, PMID: 16710300

McCready SJ, Osman F, Yasui A. 2000. Repair of UV damage in the fission yeast Schizosaccharomyces pombe.

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 451:197–210. DOI: https://doi. org/10.1016/S0027-5107(00)00050-6

McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer WD. 2016. Eukaryotic DNA polymerases in homologous recombination. Annual Review of Genetics 50:393–421. DOI: https://doi.org/10.1146/annurevgenet-120215-035243, PMID: 27893960

Mehta A, Haber JE. 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology 6:a016428. DOI: https://doi.org/10.1101/cshperspect.a016428, PMID: 25104768

Murayama Y, Kurokawa Y, Tsutsui Y, Iwasaki H. 2013. Dual regulation of Dmc1-driven DNA strand exchange by Swi5-Sfr1 activation and Rad22 inhibition. Genes & Development 27:2299–2304. DOI: https://doi.org/10.1101/gad.218693.113, PMID: 24186976

Muris DF, Vreeken K, Carr AM, Broughton BC, Lehmann AR, Lohman PH, Pastink A. 1993. Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucleic Acids Research 21:4586–4591. DOI: https://doi.org/10. 1093/nar/21.19.4586, PMID: 8233794

Muris DF, Vreeken K, Carr AM, Murray JM, Smit C, Lohman PH, Pastink A. 1996. Isolation of the Schizosaccharomyces pombe RAD54 homologue, rhp54+, a gene involved in the repair of radiation damage and replication fidelity. Journal of Cell Science 109:73–81. PMID: 8834792

Muris DF, Vreeken K, Schmidt H, Ostermann K, Clever B, Lohman PH, Pastink A. 1997. Homologous recombination in the fission yeast Schizosaccharomyces pombe: different requirements for the rhp51+, rhp54+ and rad22+ genes. Current Genetics 31:248–254. DOI: https://doi.org/10.1007/s002940050202, PMID: 9065388

Murray JM, Lindsay HD, Munday CA, Carr AM. 1997. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Molecular and Cellular Biology 17:6868–6875. DOI: https://doi.org/10.1128/MCB.17.12.6868, PMID: 9372918 Ostermann K, Lorentz A, Schmidt H. 1993. The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae.

Nucleic Acids Research 21:5940–5944. DOI: https://doi.org/10.1093/nar/21.25.5940, PMID: 8290356 Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR. 2002. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420:287–293. DOI: https://doi.org/10.1038/ nature01230, PMID: 12442171

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612. DOI: https://doi.org/10.1002/jcc.20084, PMID: 15264254

Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harbor Perspectives in Biology 7:a016600. DOI: https://doi.org/ 10.1101/cshperspect.a016600, PMID: 25833843

San Filippo J, Sung P, Klein H. 2008. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry 77:229–257. DOI: https://doi.org/10.1146/annurev.biochem.77.061306.125255

Saraste M, Sibbald PR, Wittinghofer A. 1990. The P-loop–a common motif in ATP- and GTP-binding proteins. Trends in Biochemical Sciences 15:430–434. DOI: https://doi.org/10.1016/0968-0004(90)90281-F, PMID: 2126155

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676–682. DOI: https://doi.org/10.1038/nmeth.2019, PMID: 22743772

Shin DS, Pellegrini L, Daniels DS, Yelent B, Craig L, Bates D, Yu DS, Shivji MK, Hitomi C, Arvai AS, Volkmann N, Tsuruta H, Blundell TL, Venkitaraman AR, Tainer JA. 2003. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. The EMBO Journal 22:4566–4576. DOI: https://doi. org/10.1093/emboj/cdg429, PMID: 12941707

Shinohara A, Ogawa H, Ogawa T. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470. DOI: https://doi.org/10.1016/0092-8674(92)90447-K, PMID: 1581961

Short JM, Liu Y, Chen S, Soni N, Madhusudhan MS, Shivji MKK, Venkitaraman AR. 2016. High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy. Nucleic Acids Research 11:gkw783. DOI: https://doi.org/10.1093/nar/gkw783

Stewart E, Chapman CR, Al-Khodairy F, Carr AM, Enoch T. 1997. rqh1+, a fission yeast gene related to the bloom’s and Werner’s syndrome genes, is required for reversible S phase arrest. The EMBO Journal 16:2682– 2692. DOI: https://doi.org/10.1093/emboj/16.10.2682, PMID: 9184215

Story RM, Weber IT, Steitz TA. 1992. The structure of the E. coli recA protein monomer and polymer. Nature 355:318–325. DOI: https://doi.org/10.1038/355318a0, PMID: 1731246

Story RM, Steitz TA. 1992. Structure of the recA protein-ADP complex. Nature 355:374–376. DOI: https://doi. org/10.1038/355374a0, PMID: 1731253

Su GC, Chung CI, Liao CY, Lin SW, Tsai CT, Huang T, Li HW, Chi P. 2014. Enhancement of ADP release from the RAD51 presynaptic filament by the SWI5-SFR1 complex. Nucleic Acids Research 42:349–358. DOI: https://doi. org/10.1093/nar/gkt879, PMID: 24078249

Su GC, Yeh HY, Lin SW, Chung CI, Huang YS, Liu YC, Lyu PC, Chi P. 2016. Role of the RAD51-SWI5-SFR1 ensemble in homologous recombination. Nucleic Acids Research 44:6242–6251. DOI: https://doi.org/10.1093/ nar/gkw375, PMID: 27131790

Sugawara N, Wang X, Haber JE. 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Molecular Cell 12:209–219. DOI: https://doi.org/10.1016/S1097-2765(03)00269-7, PMID: 12887906

Sun Y, McCorvie TJ, Yates LA, Zhang X. 2020. Structural basis of homologous recombination. Cellular and Molecular Life Sciences 77:3–18. DOI: https://doi.org/10.1007/s00018-019-03365-1, PMID: 31748913

Sung P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:1241–1243. DOI: https://doi.org/10.1126/science.8066464, PMID: 8066464

Sung P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes & Development 11:1111–1121. DOI: https://doi. org/10.1101/gad.11.9.1111, PMID: 9159392

Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annual Review of Genetics 45:247–271. DOI: https://doi.org/10.1146/annurev-genet-110410-132435, PMID: 21910633

Tsai SP, Su GC, Lin SW, Chung CI, Xue X, Dunlop MH, Akamatsu Y, Jasin M, Sung P, Chi P. 2012. Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex. Nucleic Acids Research 40:6558–6569. DOI: https://doi.org/10.1093/nar/gks305, PMID: 22492707

Tsubouchi H, Argunhan B, Ito K, Takahashi M, Iwasaki H. 2020. Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms. PNAS 117:12062–12070. DOI: https://doi.org/10.1073/pnas. 1917419117, PMID: 32414915

Tsutsui Y, Morishita T, Iwasaki H, Toh H, Shinagawa H. 2000. A recombination repair gene of Schizosaccharomyces pombe, rhp57, is a functional homolog of the Saccharomyces cerevisiae RAD57 gene and is phylogenetically related to the human XRCC3 gene. Genetics 154:1451–1461. PMID: 10747044

Tsutsui Y, Khasanov FK, Shinagawa H, Iwasaki H, Bashkirov VI. 2001. Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe. Genetics 159:91–105. PMID: 11560889

Wu Y, He Y, Moya IA, Qian X, Luo Y. 2004. Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Molecular Cell 15:423–435. DOI: https://doi.org/10.1016/j.molcel.2004.07.014, PMID: 15304222

Xu J, Zhao L, Xu Y, Zhao W, Sung P, Wang HW. 2017. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nature Structural & Molecular Biology 24:40–46. DOI: https://doi.org/10.1038/nsmb.3336, PMID: 27941862

Zelensky A, Kanaar R, Wyman C. 2014. Mediators of homologous DNA pairing. Cold Spring Harbor Perspectives in Biology 6:a016451. DOI: https://doi.org/10.1101/cshperspect.a016451, PMID: 25301930

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る