リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stable Oligomer Formation from Lignin by Pyrolysis of Softwood in an Aprotic Solvent with a Hydrogen Donor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stable Oligomer Formation from Lignin by Pyrolysis of Softwood in an Aprotic Solvent with a Hydrogen Donor

Wang, Jiaqi Minai, Eiji Kawamoto, Haruo 京都大学 DOI:10.1002/open.202200104

2022.09

概要

Pyrolysis of Japanese cedar wood in diphenoxybenzene (an aprotic solvent) with a hydrogen donor was investigated between 270–380 °C. Under these conditions, re-condensation via radical and quinone methide intermediates was efficiently suppressed and a thermally stable oligomer was obtained. The oligomer was stable even after the treatment time was extended. Yields of lignin-derived products at 270 °C were limited to approximately 20 wt %, but increased to >80 wt % (lignin basis) at the higher temperatures. The oligomer yield increased directly with the extent of the cellulose degradation at 350 °C. Based on the NMR analysis results, the ether bonds in lignin were largely cleaved, but condensed linkages such as β-aryl and β-β and 5-5’ types remained. The γ-hydroxypropyl group was identified as a typical side chain, formed by hydrogenation of the double bond of a coniferyl alcohol-type structure.

この論文で使われている画像

参考文献

[1] T. Nakamura, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2008, 81, 173–182.

[2] H. Kawamoto, S. Horigoshi, S. Saka, J. Wood Sci. 2007, 53,168–174.

[3] J. Cho, S. Chu, P. J. Dauenhauer, G. W. Huber, Green Chem. 2012, 14, 428–439.

[4] B. Biswas, R. Singh, J. Kumar, A. Ali, B. B. Krishna, T. Bhaskar, Bioresour. Technol. 2016, 213, 319–326.

[5] H. Kawamoto, T. Nakamura, S. Saka, Holzforschung 2008, 62, 50–56.

[6] H. Kawamoto, M. Ryoritani, S. Saka, J. Anal. Appl. Pyrolysis 2008, 81, 88– 94.

[7] T. Watanabe, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2015, 112, 23–28.

[8] T. Watanabe, H. Kawamoto, S. Saka, Holzforschung 2009, 63, 424–430.

[9] T. Kotake, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2013, 104, 573– 584.

[10] T. Nakamura, H. Kawamoto, S. Saka, J. Wood Chem. Technol. 2007, 27, 121–133.

[11] T. Kotake, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2014, 105, 309– 316.

[12] T. Kotake, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2015, 113, 57–64.

[13] S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S.-F. Koelewijn, T. Renders, B. De Meester, W. J. J. Huijgen, W. Dehaen, C. M. Courtin, B. Lagrain, W. Boerjan, B. F. Sels, Energy Environ. Sci. 2015, 8, 1748–1763.

[14] M. Asmadi, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2011, 92, 417– 425.

[15] Calculated using Advanced Chemistry Development (ACD/Labs) Soft- ware V11.02 (© 1994–2019 ACD/Labs).

[16] C. Heitner, D. R. Dimmel, J. A. Schmidt, Lignin and lignans: advances in chemistry. CRC press, USA 2016, Ch. 9.

[17] J. L. Wen, S. L. Sun, B. L. Xue, R. C. Sun, Materials 2013, 6, 359–391.

[18] S. Ralph, J. Ralph, L. L. Landucci, L. Landucci, “NMR data base of lignin and cell wall model compounds”, can be found under https://www. glbrc.org/databases_and_software/nmrdatabase/NMR_DataBase_2009_ Complete.pdf, 2009.

[19] L. K. Sy, G. D. Brown, J. Nat. Prod. 1998, 6, 987–992.

[20] K. Van Aelst, E. Van Sinay, T. Vangeel, E. Cooreman, G. Van den Bossche, T. Renders, J. Van Aelst S Van den Bosch, B. F. Sels, Chem. Sci. 2020, 11, 11498–11508.

[21] C. Zhao, Z. Hu, L. Shi, C. Wang, F. Yue, S. Li, H. Zhang, F. Lu, Green Chem. 2020, 22, 7366–7375.

[22] C. S. Lancefield, H. J. Wienk, R. Boelens, B. M. Weckhuysen, P. C. A. Bruijnincx, Chem. Sci. 2018, 9, 6348–6360.

[23] E. Minami, H. Kawamoto, S. Saka, J. Wood Sci. 2003, 49, 158–165.

[24] K. Miyamoto, H. Kawamoto, J. Anal. Appl. Pyrolysis 2019, 137, 54–60.

[25] N. Terashima, K. Kitano, M. Kojima, M. Yoshida, H. Yamamoto, U. Westermark, J. Wood Sci. 2009, 55, 409–416.

[26] T. E. Timell, Wood Sci. Technol. 1967, 1, 45–70.

[27] A. Tyminski, T. E. Timell, J. Am. Chem. Soc. 1960, 82, 2823–2827.

[28] E. Higuchi, Takayoshi, Elsevier, 2012, Ch. 3.

[29] H. Rabemanolontsoa, S. Ayada, S. Saka, Biomass Bioenergy 2011, 35, 4630–4635.

[30] A. Björkman, Sven. Papperstidn. 1956, 59, 477–485.

[31] T. Hosoya, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2007, 78, 328– 336.

[32] K. J. Sax, W. S. Saari, C. L. Mahoney, J. M. Gordon, J. Org. Chem. 1960, 25, 1590–1595.

[33] E. Steinberg, G. A. Conrad, A. W. Ruddy, J. Am. Chem. Soc. 1954, 76, 5445–5447.

[34] T. Nomura, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2017, 126, 209– 217.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る