リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Solubilization of sulfuric acid lignin by ball mill treatment with excess amounts of organic compounds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Solubilization of sulfuric acid lignin by ball mill treatment with excess amounts of organic compounds

Takada, Masatsugu Okazaki, Yutaka Kawamoto, Haruo Sagawa, Takashi 京都大学 DOI:10.1039/d2ra07235a

2023

概要

In order to improve the solubility of sulfuric acid lignin (SL) in N, N-dimethylformamide (DMF), dry ball milling with excess amounts of additives such as L-tartaric acid was performed. Although the ball-milled SL without any additives was not soluble in DMF, when the SL was ball milled with an excessive amount of L-tartaric acid (the concentration of SL to be 0.1%), the dispersion and solubility of SL in DMF detected by the dynamic light scattering was greatly improved. Furthermore, the DMF solution showed clear photoluminescence, indicating that the distance between luminophores was modulated due to dispersion on the nanoscale. The structural analysis of the isolated lignin showed a decrease in molecular weight and the introduction of carboxylic acid groups. In other words, the introduction of hydrophilic functional groups into the lignin and simultaneously decrease in the molecular weight due to the cleavage of lignin linkages is considered to result in good dispersion in DMF on both the micro and macro scales. Similar effects were observed with the other chemicals containing several hydrophilic groups such as citric acid, D-glucose, and polyacrylic acid. Furthermore, this method is applicable to various lignins other than SL, and it is expected to utilize unused lignin resources.

この論文で使われている画像

参考文献

1 L. Shuai, Q. Yang, J. Y. Zhu, F. C. Lu, P. J. Weimer, J. Ralph and X. J. Pan, Bioresour. Technol., 2010, 101, 3106–3114.

2 M. Takada, R. Chandra, J. Wu and J. N. Saddler, Bioresour. Technol., 2020, 302, 122895.

3 M. M. Jensen, D. T. Djajadi, C. Torri, H. B. Rasmussen, R. B. Madsen, E. Venturini, I. Vassura, J. Becker, B. B. Iversen, A. S. Meyer, H. Jørgensen, D. Fabbri and M. Glasius, ACS Sustainable Chem. Eng., 2018, 6, 5940–5949.

4 J. H. Lora, Monomers, Polymers and Composites from Renewable Resources, Elsevier, Amsterdam, 2008.

5 Y. Matsushita, H. Sano, M. Imai, T. Imai and K. Fukushima, J. Wood Sci., 2007, 53, 67–70.

6 S. Yasuda, E. Hamaguchi and K. Asano, J. Wood Sci., 1999, 45, 245–249.

7 Y. Matsushita and S. Yasuda, Bioresour. Technol., 2005, 96, 465–470.

8 Y. Matsushita, M. Imai, T. Tamura and K. Fukushima, J. Appl. Polym. Sci., 2005, 98, 2508–2513.

9 Q. Liu, Y. Matsushita, D. Aoki, S. Yagami and K. Fukushima, BioResources, 2018, 13, 7805–7825.

10 K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025–1074.

11 M. A. P. Martins, C. P. Frizzo, D. N. Moreira, L. Buriol and P. Machado, Chem. Rev., 2009, 109, 4140–4182.

12 G. Kaupp, J. Phys. Org. Chem., 2008, 21, 630–643.

13 N. Giri, C. Bowen, J. S. Vyle and S. L. James, Green Chem., 2008, 10, 627–662.

14 T. Szuppa, A. Stolle, B. Ondruschka and W. Hopfe, Green Chem., 2010, 12, 1288–1294.

15 C. C. Piras, S. Fern´andez-Prieto and W. M. De Borggraeve, Nanoscale Adv., 2019, 1, 937–947.

16 N. Willis-Fox, E. Rognin, C. Baumann, T. A. Aljohani, R. Göstl and R. Daly, Adv. Funct. Mater., 2020, 30, 2002372.

17 C. W. Dence, in Methods in Lignin Chemistry, ed. S. Y. Lin and C. W. Dence, Springer Verlag, Berlin, 1992, pp. 33–58.

18 G. Gellerstedt, in Methods in Lignin Chemistry, ed. S. Y. Lin and C. W. Dence, 1994, pp. 487–497.

19 M. Takada, Y. Okazaki, H. Kawamoto and T. Sagawa, ACS Omega, 2022, 7, 5096–5103.

20 O. Faix, in Methods in Lignin Chemistry, ed. S. Y. Lin and C. W. Dence, Springer Berlin Heidelberg, 1992, pp. 233–241.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る