リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence of Proteins on the Lignin Decomposition Behavior of Japanese Cedar (Cryptomeria japonica) Wood by Supercritical Methanol Treatment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence of Proteins on the Lignin Decomposition Behavior of Japanese Cedar (Cryptomeria japonica) Wood by Supercritical Methanol Treatment

Yao, Yilin Takada, Masatsugu Minami, Eiji Kawamoto, Haruo 京都大学 DOI:10.1021/acsomega.2c03716

2022.10.25

概要

The effect of adding protein on the decomposition behavior of lignin in Japanese cedar under supercritical methanol conditions (270 °C/27 MPa) was studied. The Klason method was used to detect the lignin content in the insoluble residue following to a 30 min treatment. Adding either an animal (bovine serum albumin) or plant (soy) protein enhanced delignification from 50 to 65% of the lignin-based wt %. This result was attributed to enhanced lignin depolymerization owing to inhibited lignin recondensation and/or the suppressed formation of polysaccharide-derived char via reactions between the protein and polysaccharides. Although the solubilization of lignin was promoted and the yield of lignin-derived low-molecular-weight compounds increased, the selectivity of major monomers such as coniferyl alcohol (CA) and γ-methylated CA decreased. The addition of proteins has a substantial impact on the decomposition behavior of cell wall components under supercritical methanol conditions. This information provides insights into the use of protein-rich lignocelluloses.

この論文で使われている画像

参考文献

(1) Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.;Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller,M.; Langan, P.; Naskar, A. K.; Saddler, J. N.; Tschaplinski, T. J.; Tuskan, G. A.; Wyman, C. E. Lignin valorization: improving lignin processing in the biorefinery. Science 2014, 344, 1246843.

(2) Ando, H.; Sakaki, T.; Kokusho, T.; Shibata, M.; Uemura, Y.; Hatate, Y. Decomposition behavior of plant biomass in hot- compressed water. Ind. Eng. Chem. Res. 2000, 39, 3688−3693.

(3) Yu, Y.; Lou, X.; Wu, H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 2008, 22, 46−60.

(4) Tirtowidjojo, S.; Sarkanen, K. V.; Pla, F.; McCarthy, J. L. Kinetics of organosolv delignification in batch- and flow-through reactors. Holzforschung 1988, 47, 177−183.

(5) Erdocia, X.; Prado, R.; Corcuera, M. Ã.; Labidi, J. Influence of reaction conditions on lignin hydrothermal treatment. Front. Energy Res. 2014, 2, 1−7.

(6) Phaiboonsilpa, N.; Saka, S. Two-step hydrolysis of Japanese cedar as treated by semi-flow hot-compressed water. J. Wood Sci. 2010, 56, 331−338.

(7) Yamazaki, J.; Minami, E.; Saka, S. Liquefaction of beech wood in various supercritical alcohols. J. Wood Sci. 2006, 52, 527−532.

(8) Rabemanolontsoa, H.; Saka, S. Comparative study on chemical composition of various biomass species. RSC Adv. 2013, 3, 3946− 3956.

(9) Leng, L.; Yang, L.; Leng, S.; Zhang, W.; Zhou, Y.; Peng, H.; Li, H.; Hu, Y.; Jiang, S.; Li, H. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Sci. Total Environ. 2021, 756, 143679.

(10) Fan, Y.; Hornung, U.; Dahmen, N.; Kruse, A. Hydrothermal liquefaction of protein-containing biomass: study of model com- pounds for Maillard reactions. Biomass Convers. Biorefin. 2018, 8, 909−923.

(11) Zeb, H.; Riaz, A.; Kim, J. Effective conversion of the carbohydrate-rich macroalgae (Saccharina japonica) into bio-oil using low-temperature supercritical methanol. Energy Convers. Manage. 2017, 151, 357−367.

(12) Takada, M.; Minami, E.; Kawamoto, H. Topochemistry of the delignification of Japanese beech (Fagus crenata) wood by super- critical methanol treatment. ACS Omega 2021, 6, 20924−20930.

(13) Björkman, A. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Sven Papperstidn 1956, 59, 477−485.

(14) Wise, L. E.; Murphy, M.; Daddieco, A. A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade 1946, 29, 210−218.

(15) Saka, S.; Ueno, T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose 1999, 6, 177−191.

(16) Ishikawa, Y.; Saka, S. Chemical conversion of cellulose as treated in supercritical methanol. Cellulose 2001, 8, 189−195.

(17) Dence, C. W., 1992. The Determination of Lignin. Lin, S. Y., Dence, C. W. (Eds.), Methods in Lignin Chemistry; Springer Verlag: Berlin, pp. 33−58.

(18) Shuai, L.; Saha, B. Towards high-yield lignin monomer production. Green Chem. 2017, 19, 3752−3758.

(19) Pielhop, T.; Larrazábal, G. O.; Studer, M. H.; Brethauer, S.; Seidel, C.-M.; Rudolf von Rohr, P. Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chem. 2015, 17, 3521−3532.

(20) Kruse, A.; Maniam, P.; Spieler, F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind. Eng. Chem. Res. 2007, 46, 87−96.

(21) Titirici, M.-M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204.

(22) Lundquist, K.; Lundgren, R.; Danielsen, J.; Haaland, A.; Svensson, S. Acid degradation of lignin. Acta Chem. Scand. 1972, 26, 2005−2023.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る