リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「InP membrane integrated photonics research」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

InP membrane integrated photonics research

Yuqing Jiao Nobuhiko Nishiyama Jos van der Tol Jorn van Engelen Vadim Pogoretskiy Sander Reniers Amir Abbas Kashi Yi Wang Victor Dolores Calzadilla Marc Spiegelberg Zizheng Cao Kevin Williams Tomohiro Amemiya Shigehisa Arai 東京工業大学 DOI:https://doi.org/10.1088/1361-6641/abcadd

2020.12.03

概要

Recently a novel photonic integration technology, based on a thin InP-based membrane, is emerging. This technology offers monolithic integration of active and passive functions in a sub-micron thick membrane. The enhanced optical confinement in the membrane results in ultracompact active and passive devices. The membrane also enables approaches to converge with electronics. It has shown high potential in breaking the speed, energy and density bottlenecks in conventional photonic integration technologies. This paper explains the concept of the InP membrane, discusses the versatility of various technology approaches and reviews the recent advancement in this field.

参考文献

[1] Miller S E 1969 Integrated optics: an introduction Bell Syst. Tech. J. 48 2059–69

[2] Kish F et al 2018 System-on-chip photonic integrated circuits IEEE J. Sel. Top. Quantum Electron. 24 1–20

[3] Smit M, Leijtens X, Bente E, Van der Tol J, Ambrosius H, Robbins D, Wale M, Grote N and Schell M 2011 Generic foundry model for InP-based photonics IET Optoelectron. 5 187–94

[4] Smit M et al 2014 An introduction to InP-based generic integration technology Semicond. Sci. Technol. 29 083001

[5] Summers J et al 2014 Monolithic InP-based coherent transmitter photonic integrated circuit with 2.25 Tbit/s capacity Electron. Lett. 50 1150–2

[6] Lal V et al 2017 Extended C-band tunable multi-channel InP-based coherent transmitter PICs J. Lightwave Technol. 35 1320–7

[7] Yao W, Jiao Y and Williams K A 2018 Nanophotonics enables future InP PIC scaling Featured Article in PIC Magazine (Issue 11 October 2018)

[8] Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S, Taillaert D, Luyssaert B, Van Campenhout J, Bienstman P and Van Thourhout D 2005 Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology J. Lightwave Technol. 23 401–12

[9] Szelag B et al 2019 Hybrid III–V/silicon technology for laser integration on a 200-mm fully CMOS-compatible silicon photonics platform IEEE J. Sel. Top. Quantum Electron. 25 1–10

[10] Zhang J, Haq B, O’Callaghan J, Gocalinska A, Pelucchi E, Trindade A J, Corbett B, Morthier G and Roelkens G 2018 Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser Opt. Express 26 8821–30

[11] Chen S et al 2016 Electrically pumped continuous-wave III–V quantum dot lasers on silicon Nat. Photon. 10 307–11

[12] Arai S, Nishiyama N, Maruyama T and Okumura T 2011 GaInAsP/InP membrane lasers for optical interconnects IEEE J. Sel. Top. Quantum Electron. 17 1381–9

[13] Okamoto T, Nunoya N, Onodera Y, Tamura S and Arai S 2001 Continuous wave operation of optically pumped membrane DFB laser Electron. Lett. 37 1455–7

[14] Kakitsuka T, Hasebe K, Fujii T, Sato T, Takeda K and Matsuo S 2015 InP-based membrane optical devices for large-scale photonic integrated circuits NTT Tech. Rev. 13 1–6

[15] Oe K, Noguchi Y and Caneau C 1994 GaInAsP lateral current injection lasers on semi-insulating substrates IEEE Photonic Technol. Lett. 6 479–81

[16] Aihara T, Hiraki T, Takeda K, Fujii T, Kakitsuka T, Tsuchizawa T and Matsuo S 2019 Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide Opt. Express 27 36438–48

[17] Inoue D, Hiratani T, Atsuji Y, Tomiyasu T, Amemiya T, Nishiyama N and Arai S 2015 Monolithic integration of membrane-based butt-jointed built-in DFB lasers and p-i-n photodiodes bonded on Si substrate IEEE J. Sel. Top. Quantum Electron. 21 1–7

[18] Matsuo S, Takeda K, Sato T, Notomi M, Shinya A, Nozaki K, Taniyama H, Hasebe K and Kakitsuka T 2012 Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser Opt. Express 20 3773–80

[19] Okumura T 2010 Study of GaInAsP/InP Membrane DFB Laser on Silicon on Insulator Substrate (Tokyo: Tokyo Institute of Technology)

[20] Tomiyasu T, Hiratani T, Inoue D, Nakamura N, Amemiya T, Nishiyama N and Arai S 2017 Waveguide loss reduction of lateral-current-injection type GaInAsP/InP membrane Fabry–P´erot laser Japan. J. Appl. Phys. 56 050311

[21] Jr H C C and Buehler E 1977 Evidence for low surface recombination velocity on n-type InP Appl. Phys. Lett. 30 247–9

[22] Sakai S, Umeno M and Amemiya Y 1980 Measurement of diffusion coefficient and surface recombination velocity for P-InGaAsP grown on InP Japan. J. Appl. Phys. 19 109–13

[23] Hiratani T, Inoue D, Tomiyasu T, Fukuda K, Amemiya T, Nishiyama N and Arai S 2017 High-efficiency operation of membrane distributed-reflector lasers on silicon substrate IEEE J. Sel. Top. Quantum Electron. 23 1–8

[24] Tomiyasu T, Hiratani T, Inoue D, Nakamura N, Fukuda K, Uryu T, Amemiya T, Nishiyama N and Arai S 2017 High-differential quantum efficiency operation of GaInAsP/InP membrane distributed-reflector laser on Si Appl. Phys. Express 10 062702

[25] Tomiyasu T, Inoue D, Hiratani T, Fukuda K, Nakamura N, Uryu T, Amemiya T, Nishiyama N and Arai S 2018 20-Gbit/s direct modulation of GaInAsP/InP membrane distributed-reflector laser with energy cost of less than 100 fJ/bit Appl. Phys. Express 11 012704

[26] Takeda K, Sato T, Shinya A, Nozaki K, Kobayashi W, Taniyama H, Notomi M, Hasebe K, Kakitsuka T and Matsuo S 2013 Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers Nat. Photon. 7 569–75

[27] Kuruma K, Ota Y, Kakuda M, Iwamoto S and Arakawa Y 2020 Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots APL Photonics 5 046106

[28] Pogoretskiy V, van Engelen J, van der Tol J, Higuera-Rodriguez A, Smit M and Jiao Y 2017 An integrated SOA-building block for an InP-membrane platform Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) (New Orleans, LA: Optical Society of America) pp JW4A.1

[29] Jiao Y et al 2020 Indium phosphide membrane nanophotonic integrated circuits on silicon Phys. Status Solidi a 217 1900606

[30] Augustin L M et al 2018 InP-based generic foundry platform for photonic integrated circuits IEEE J. Sel. Top. Quantum Electron. 24 1–10

[31] Soares M F, Baier M, Gaertner T, Grote N, Moehrle M, Beckerwerth T, Runge P and Schell M 2019 InP-based foundry PICs for optical interconnects Appl. Sci. 9 1588

[32] Pogoretskiy V 2019 Nanophotonic Membrane Platform for Integrated Active Devices and Circuits (Eindhoven: Eindhoven University of Technology)

[33] Jiao Y, Heiss D, Shen L, Bhat S, Smit M and van der Tol J 2015 First demonstration of an electrically pumped laser in the inp membrane on silicon platform Advanced Photonics 2015 (Boston, MA: Optical Society of America) pp IM4B.3

[34] Tol J J G M V D, Jiao Y, Shen L, Millan-Mejia A, Pogoretskii V, Engelen J P V and Smit M K 2018 Indium phosphide integrated photonics in membranes IEEE J. Sel. Top. Quantum Electron. 24 6100809

[35] Davenport M L, Skendzic S, Volet N, Hulme J C, Heck M J R and Bowers J E 2016 Heterogeneous silicon/III-V semiconductor optical amplifiers IEEE J. Sel. Top. Quantum Electron. 22 3100111

[36] Roelkens G et al 2015 III-V-on-silicon photonic devices for optical communication and sensing Photonics 2 969

[37] Zhang J et al 2019 III-V-on-Si photonic integrated circuits realized using micro-transfer-printing APL Photonics 4 110803

[38] Shen L, Jiao Y, Rodriguez A H, Mejia A J M, Roelkens G C, Smit M K and Tol J J G M V D 2016 Double-sided processing for membrane-based photonic integration 18th European Conf. on Integrated Optics (ECIO 2016) (Warsaw, Poland)

[39] Tol J J G M V D, Jiao Y, Engelen J P V, Pogoretskiy V, Kashi A A and Williams K 2020 InP membrane on silicon (IMOS) photonics J. Quantum Elect. 56 1–7

[40] Kurishima K, Kobayashi T and Gösele U 1992 Abnormal redistribution of Zn in InP/InGaAs heterojunction bipolar transistor structures Appl. Phys. Lett. 60 2496–8

[41] Huang Y, Ryou J-H and Dupuis R D 2008 Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors J. Cryst. Growth 310 4345–50

[42] Weber J P 1994 Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters IEEE J. Quantum Electron. 30 1801–16

[43] Reier F W, Jahn E, Agrawal N, Harde P and Grote N 1994 Doping characteristics of undoped and Zn-doped in(Ga)AlAs layers grown by low-pressure metalorganic vapour phase epitaxy J. Cryst. Growth 135 463–8

[44] Bhat R, Koza M A, Song J I, Schwarz S A, Caneau C and Hong W P 1994 Reduction of zinc diffusion into the collector of InP-based double heterojunction bipolar transistors grown by organometallic chemical vapor deposition Appl. Phys. Lett. 65 338–40

[45] Chellic C, Cui D, Hubbard S M, Eisenbach A, Pavlidis D, Krawczyk S K and Sermage B 1999 Minority carrier lifetime in MOCVD-grown C- and Zn-doped InGaAs Conf. Proc. 11th Int. Conf. on Indium Phosphide and Related Materials (IPRM’99) (Cat. No.99CH36362) pp 127–30

[46] Cui D, Pavlidis D and Eisenbach A 2000 Characterization of carbon induced lattice contraction of highly carbon doped InGaAs Conf. Proc. 2000 Int. Conf. on Indium Phosphide and Related Materials (Cat. No.00CH37107) pp 526–9

[47] Koumetz S, Marcon J, Ketata K, Ketata M and Launay P 1997 Beryllium diffusion in InGaAs compounds grown by chemical beam epitaxy J. Phys. D: Appl. Phys. 30 757–62

[48] Daunt C L M, Cleary C S, Manning R J, Thomas K, Young R J, Pelucchi E, Corbett B and Peters F H 2012 Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting IEEE J. Quantum Electron. 48 1467–75

[49] Inoue D, Lee J, Doi K, Hiratani T, Atsuji Y, Amemiya T, Nishiyama N and Arai S 2014 Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate Appl. Phys. Express 7 072701

[50] Matsuo S, Fujii T, Hasebe K, Takeda K, Sato T and Kakitsuka T 2014 Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer Opt. Express 22 12139–47

[51] Liu X and Aspnes D E 2009 Analytical solution of thickness variations in selective area growth by organometallic chemical vapor deposition Appl. Phys. Lett. 94 253112

[52] Inoue D 2017 GaInAsP/InP membrane Integrated Lasers for On-chip Optical Interconnection (Tokyo: Department of Electrical and Electronic Engineering, Tokyo Institute of Technology)

[53] Maile B E, Forchel A, Germann R and Grützmacher D 1989 Impact of sidewall recombination on the quantum efficiency of dry etched InGaAs/InP semiconductor wires Appl. Phys. Lett. 54 1552–4

[54] Takino Y, Shirao M, Sato N, Sato T, Amemiya T, Nishiyama N and Arai S 2012 Improved regrowth interface of AlGaInAs/InP-buried-heterostructure lasers by in-situ thermal cleaning IEEE J. Quantum Electron. 48 971–9

[55] Pogoretskiy V, Engelen J P V, Tol J V D and Jiao Y 2018 Adhesive wafer bonding of 2 inch InP to 3 inch silicon wafers for a membrane integrated photonics platform Proc. 23rd Annual Symp. of the IEEE Photonics Society Benelux Chapter (Brussel, Belgium) pp 160–4

[56] Lee J, Maeda Y, Atsumi Y, Takino Y, Nishiyama N and Arai S 2012 Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits Japan. J. Appl. Phys. 51 042201

[57] Park J-K, Takagi S and Takenaka M 2018 InGaAsP Mach–Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform Opt. Express 26 4842–52

[58] Wang Y, Nagasaka K, Mitarai T, Ohiso Y, Amemiya T and Nishiyama N 2020 High-quality InP/SOI heterogeneous material integration by room temperature surface-activated bonding for hybrid photonic devices Japan. J. Appl. Phys. 59 052004

[59] Hayashi Y, Suzuki J, Inoue S, Hasan S M T, Kuno Y, Itoh K, Amemiya T, Nishiyama N and Arai S 2016 GaInAsP/silicon-on-insulator hybrid laser with ring-resonator-type reflector fabricated by N2plasma-activated bonding Japan. J. Appl. Phys. 55 082701

[60] Spiegelberg M, Engelen J P V, Vries T D, Williams K A and Tol J J G M V D 2018 BCB bonding of high topology 3 inch InP and BiCMOS wafers for integrated optical transceivers Proc. 23rd Annual Symp. of the IEEE Photonics Society Benelux Chapter (Brussel, Belgium) pp 160–4

[61] Sakanas A, Semenova E, Ottaviano L, Mørk J and Yvind K 2019 Comparison of processing-induced deformations of InP bonded to Si determined by e-beam metrology: direct vs. adhesive bonding Microelectron. Eng. 214 93–99

[62] Liang D and Bowers J E 2008 Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate J. Vac. Sci. Technol. B 26 1560–8

[63] Fang W, Takahashi N, Ohiso Y, Amemiya T and Nishiyama N 2020 High-quality, room-temperature, surface-activated bonding of GaInAsP/InP membrane structure on silicon Japan. J. Appl. Phys. 59 060905

[64] Spiegelberg M, Engelen J P V, Williams K A and Tol J J G M V D 2019 Wafer scale technology to integrate photonics on BiCMOS electronics Proc. of the 24th Annual Symp. of the IEEE Photonics Society Benelux Chapter (Amsterdam, The Netherlands)

[65] Inoue K, Plumwongrot D, Nishiyama N, Sakamoto S, Enomoto H, Tamura S, Maruyama T and Arai S 2009 Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60 Japan. J. Appl. Phys. 48 030208

[66] Kang J 2014 Study of Si Grating Couplers toward 3-Dimensional Optical Interconnect (Tokyo: Tokyo Institute of Technology)

[67] Jiao Y, Pello J, Mejia A M, Shen L, Smalbrugge B, Geluk E J, Smit M and van der Tol J 2014 Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices Opt. Lett. 39 1645–8

[68] Jiao Y, de Vries T, Unger R-S, Shen L, Ambrosius H, Radu C, Arens M, Smit M and van der Tol J 2015 Vertical and smooth single-step reactive ion etching process for InP membrane waveguides J. Electrochem. Soc. 162 E90–5

[69] Selvaraja S K et al 2014 Highly uniform and low-loss passive silicon photonics devices using a 300mm CMOS platform OFC 2014 pp 1–3

[70] Bolk J, Ambrosius H, Stabile R, Latkowski S, Leijtens X, Bitincka E, Augustin L, Marsan D, Darracq J and Williams K 2018 Deep UV lithography process in generic InP integration for arrayed waveguide gratings IEEE Photonics Technol. Lett. 30 1222–5

[71] Engelen J V, Reniers S, Bolk J, Williams K, Tol J V D and Jiao Y 2019 Low loss InP membrane photonic integrated circuits enabled by 193-nm deep UV lithography Compound Semiconductor Week (CSW 2019) (Nara, Japan) pp MoA3–7

[72] Engelen J V, Bolk J, Zhang X, Williams K, Jiao Y and Tol J V D 2019 Arrayed waveguide grating in InP membrane on silicon patterned by 193-nm deep UV lithography Proc. 24th Annual Symp. of the IEEE Photonics Society Benelux Chapter (Amsterdam, The Netherlands)

[73] Kobayashi S et al 2010 LWR Reduction by Novel Lithographic and Etch Techniques vol 7639 (SPIE)

[74] Shen L et al 2015 Low-optical-loss, low-resistance Ag/Ge based ohmic contacts to n-type InP for membrane based waveguide devices Opt. Mater. Express 5 393–8

[75] Shen L, Veldhoven P J V, Jiao Y, Dolores-Calzadilla V, Tol J J G M V D, Roelkens G and Smit M K 2016 Ohmic contacts with ultra-low optical loss on heavily doped n-type InGaAs and InGaAsP for InP-based photonic membranes IEEE Photonics J. 8 1–10

[76] Jin-Kwon P, Mitsuru T and Shinichi T 2016 Low resistivity lateral P–I–N junction formed by Ni–InGaAsP alloy for carrier injection InGaAsP photonic devices Japan. J. Appl. Phys. 55 04EH

[77] Liu T, Pagliano F, Veldhoven R V, Pogoretskiy V, Jiao Y and Fiore A 2019 Low-voltage MEMS optical phase modulators and switches on a indium phosphide membrane on silicon Appl. Phys. Lett. 115 251104

[78] Pogoretskiy V, Jiao Y, Smit M and Tol J V D 2017 Continuous wave integrated DBR laser in an InP membrane platform 2017 IEEE Photonics Conf. (IPC) pp 13–14

[79] Reniers S F G, Wang Y, Williams K A, Tol J J G M V D and Jiao Y 2019 Characterization of waveguide photonic crystal reflectors on indium phosphide membranes IEEE J. Quantum Electron. 55 1–7

[80] Pogoretskiy V, Engelen J P V, Tol J J G M V D and Jiao Y 2018 Towards a fully integrated indium-phosphide membrane on silicon photonics platform SPIE/COS Photonics Asia: SPIE pp 7

[81] Coldren L A, Corzine S W and Mashanovitch M L 2012 Diode Lasers and Photonic Integrated Circuits (New York: Wiley)

[82] Pogoretskiy V, Tol J V D, Higuera-Rodriguez A, Smit M and Jiao Y 2017 Integrated photonic crystal DBR laser in an InP membrane platform 39th Progress in Electromagnetic Research Symp. (PIERS 2017) (Singapore)

[83] Pogoretskiy V, Tol J V D, Smit M and Jiao Y 2019 Monolithically integrated widely tunable laser on an InP membrane circuits 24th OptoElectronics and Communications Conf. (OECC 2019) (Fukuoka, Japan) pp WD2

[84] Pogoretskiy V, Tol J V D and Jiao Y 2019 Low noise monolithically integrated membrane DFB laser on silicon Compound Semiconductor Week (CSW 2019), (Nara, Japan) pp MoA3–8

[85] van der Tol J J G M, Jiao Y and Williams K A 2018 Semiconductors and Semimetals (Amsterdam: Elsevier)

[86] Miller D A B 2009 Device requirements for optical interconnects to silicon chips Proc. IEEE 97 1166–85

[87] Hiratani T, Shindo T, Doi K, Atsuji Y, Inoue D, Amemiya T, Nishiyama N and Arai S 2015 Energy cost analysis of membrane distributed-reflector lasers for on-chip optical interconnects IEEE J. Sel. Top. Quantum Electron. 21 299–308

[88] Hill M T et al 2007 Lasing in metallic-coated nanocavities Nat. Photon. 1 589–94

[89] Hill M T 2018 Electrically pumped metallic and plasmonic nanolasers Chin. Phys. B 27 114210

[90] Ding K, Liu Z C, Yin L J, Hill M T, Marell M J H, van Veldhoven P J, Nöetzel R and Ning C Z 2012 Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection Phys. Rev. B 85 041301

[91] Dolores-Calzadilla V, Romeira B, Pagliano F, Birindelli S, Higuera-Rodriguez A, van Veldhoven P J, Smit M K, Fiore A and Heiss D 2017 Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon Nat. Commun. 8 14323

[92] Xiao Y, Watanabe M, Wang Y, Tanemura T and Nakano Y 2018 Waveguide coupling of wavelength-scale capsule-shaped metal-clad laser 2018 IEEE Int. Semiconductor Laser Conf. (ISLC) pp 1–2

[93] Zhang B, Okimoto T, Tanemura T and Nakano Y 2014 Proposal and numerical study on capsule-shaped nanometallic semiconductor lasers Japan. J. Appl. Phys. 53 112703

[94] Higuera Rodriguez A, Romeira B, Birindelli S, Black L, Smalbrugge B, Kessels E, Smit M and Fiore A 2016 Ultra-low surface recombination for deeply etched III-V semiconductor nano-cavity lasers Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Vancouver: Optical Society of America) pp ITu2A

[95] Mäkelä M, Hatanpää T, Ritala M, Leskelä M, Mizohata K, Meinander K and Räisänen J 2016 Potential gold(I) precursors evaluated for atomic layer deposition J. Vac. Sci. Technol. A 35 01B112

[96] Mäkelä M, Hatanpää T, Mizohata K, Meinander K, Niinistö J, Räisänen J, Ritala M and Leskelä M 2017 Studies on thermal atomic layer deposition of silver thin films Chem. Mater. 29 2040–5

[97] Ren´e H J V, Akhil S, Yuqing J, Wilhelmus M M K and Ageeth A B 2016 Area-selective atomic layer deposition of platinum using photosensitive polyimide Nanotechnology 27 405302

[98] Vervuurt R H J, Karasulu B, Thissen N F W, Yuqing J, Weber J-W, Kessels W E M and Bol A A 2018 Pt–graphene contacts fabricated by plasma functionalization and atomic layer deposition Adv. Mater. Interfaces 5 1800268

[99] Gu Z, Inoue D, Amemiya T, Nishiyama N and Arai S 2018 20 Gbps operation of membrane-based GaInAs/InP waveguide-type p–i–n photodiode bonded on Si substrate Appl. Phys. Express 11 022102

[100] Gu Z, Uryu T, Nakamura N, Inoue D, Amemiya T, Nishiyama N and Arai S 2017 On-chip membrane-based GaInAs/InP waveguide-type p-i-n photodiode fabricated on silicon substrate Appl. Opt. 56 7841–8

[101] Nozaki K, Matsuo S, Fujii T, Takeda K, Ono M, Shakoor A, Kuramochi E and Notomi M 2016 Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier Optica 3 483–92

[102] Inoue D, Hiratani T, Fukuda K, Tomiyasu T, Gu Z, Amemiya T, Nishiyama N and Arai S 2017 Integrated optical link on Si substrate using membrane distributed-feedback laser and p-i-n photodiode IEEE J. Sel. Top. Quantum Electron. 23 1–8

[103] Ishibashi T, Shimizu N, Kodama S, Ito H, Nagatsuma T and Furuta T 1997 Ultrafast electronics and optoelectronics OSA Trends in Optics and Photonics Series (Optical Society of America) pp UC3

[104] Shen L, Jiao Y, Yao W, Cao Z, Engelen J P V, Tol J J G M V D, Roelkens G and Smit M K 2016 High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform Opt. Express 24 8290–301

[105] Renaud C, Fice M, Ponnampalam L, Natrella M, Graham C and Seeds A 2015 Uni-travelling Carrier Photodetectors as THz Detectors and Emitters vol 9370 (SPIE)

[106] Wolf S et al 2018 Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 Gbit/s on-off keying Sci. Rep. 8 2598

[107] Heni W et al 2017 Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design Opt. Express 25 2627–53

[108] Kieninger C et al 2018 Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator Optica 5 739–48

[109] Koeber S et al 2015 Femtojoule electro-optic modulation using a silicon–organic hybrid device Light Sci. Appl. 4 e255-e

[110] Sekine N, Takagi S and Takenaka M 2019 Investigation of optical loss and bandwidth of InP-organic hybrid optical modulator Compound Semiconductor Week (CSW 2019) (Nara, Japan) pp TuA3

[111] Millan Mejia A J, Jiao Y, van der Tol J J G M and Smit M K 2016 Fabrication technology of a slot waveguide modulator in InP Membranes on silicon (IMOS) 18th European Conf. on Integrated Optics (ECIO 2016)

[112] Ikku Y, Yokoyama M, Ichikawa O, Hata M, Takenaka M and Takagi S 2012 Low-driving-current InGaAsP photonic-wire optical switches using III-V CMOS photonics platform European Conf. and Exhibition on Optical Communication p Tu.4.E.5

[113] Liu T, Pagliano F, Veldhoven R V, Pogoretskii V, Jiao Y and Fiore A 2019 Low-voltage InP MEMS optical switch on silicon 21th European Conf. on Integrated Optics (ECIO 2019) (Ghent, Belgium) pp F.A2.4

[114] Engelen J P V, Shen L, Roelkens G, Jiao Y, Smit M K and Tol J J G M V D 2018 A novel broadband electro-absorption modulator based on bandfilling in n-InGaAs: design and simulations IEEE J. Sel. Top. Quantum Electron. 24 1–8

[115] Nishi H, Takeda K, Tsuchizawa T, Fujii T, Matsuo S, Yamada K and Yamamoto T 2015 Monolithic integration of InP Wire and SiOx waveguides on Si Platform IEEE Photonics J. 7 1–8

[116] Dave U D, Kuyken B, Leo F, Gorza S-P, Combrie S, De Rossi A, Raineri F and Roelkens G 2015 Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range Opt. Express 23 4650–7

[117] Rahim A et al 2017 Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits J. Lightwave Technol. 35 639–49

[118] Kumar R R, Raevskaia M, Pogoretskii V, Jiao Y and Tsang H K 2019 Entangled photon pair generation from an InP membrane micro-ring resonator Appl. Phys. Lett. 114 021104

[119] Kumar R R, Raevskaia M, Pogoretskii V, Jiao Y and Tsang H K 2019 InP membrane micro-ring resonator for generating heralded single photons J. Opt. 21 115201

[120] Chang L et al 2019 Low loss (Al)GaAs on an insulator waveguide platform Opt. Lett. 44 4075–8

[121] Epping J P, Oldenbeuving R M, Geskus D, Visscher I, Grootjans R, Roeloffzen C G H and Heideman R G 2019 High power, tunable, narrow linewidth dual gain hybrid laser Laser Congress 2019 (ASSL, LAC, LS&C) (Vienna, Optical Society of America) pp ATu1A.4

[122] Takenaka M and Nakano Y 2007 InP photonic wire waveguide using InAlAs oxide cladding layer Opt. Express 15 8422–7

[123] Jiao Y, Liu J, Mejia A M, Shen L and Tol J V D 2016 Ultra-sharp and highly tolerant waveguide bends for InP photonic membrane circuits IEEE Photonics Technol. Lett. 28 1637–40

[124] Emre Kaplan A, Bellanca G, van Engelen J P, Jiao Y, van der Tol J J G M and Bassi P 2019 Experimental characterization of directional couplers in InP photonic membranes on silicon (IMOS) OSA Contin. 2 2844–54

[125] Kleijn E, Melati D, Melloni A, de Vries T, Smit M K and Leijtens X J M 2014 Multimode interference couplers with reduced parasitic reflections IEEE Photonics Technol. Lett. 26 408–10

[126] Millan-Mejia A J, Tol J J G M V D and Smit M K 2017 1 × 2 Multimode interference coupler with ultra-low reflections in membrane photonic integrated circuits 19th European Conf. on Integrated Optics (ECIO 2017)

[127] Kleijn E, Smit M K and Leijtens X J M 2013 Multimode interference reflectors: a new class of components for photonic integrated circuits J. Lightwave Technol. 31 3055–63

[128] Takenaka M, Yokoyama M, Sugiyama M, Nakano Y and Takagi S 2013 InGaAsP grating couplers fabricated using complementary-metal–oxide–semiconductor-compatible III–V-on-insulator on Si Appl. Phys. Express 6 042501

[129] Kashi A A, Tol J V D, Williams K and Jiao Y 2019 High-efficiency deep-etched apodized focusing grating coupler with metal back-reflector on an InP-membrane 24th OptoElectronics and Communications Conf. (OECC 2019) (Fukuoka, Japan) pp 1–3

[130] Higuera-Rodriguez A, Dolores-Calzadilla V, Jiao Y, Geluk E J, Heiss D and Smit M K 2015 Realization of efficient metal grating couplers for membrane-based integrated photonics Opt. Lett. 40 2755–7

[131] Nishi H, Fujii T, Takeda K, Hasebe K, Kakitsuka T, Tsuchizawa T, Yamamoto T, Yamada K and Matsuo S 2016 Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate Opt. Express 24 18346–52

[132] Takenaka M, Yokoyama M, Sugiyama M, Nakano Y and Takagi S 2009 InGaAsP photonic wire based ultrasmall arrayed waveguide grating multiplexer on Si wafer Appl. Phys. Express 2 122201

[133] Wang J, Sheng Z, Li L, Pang A, Wu A, Li W, Wang X, Zou S, Qi M and Gan F 2014 Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology Opt. Express 22 9395–403

[134] Zhang X, Engelen J V, Reniers S, Cao Z, Jiao Y and Koonen A M J 2019 Reflecting AWG by using photonic crystal reflector on indium-phosphide membrane on silicon platform IEEE Photonic Technol. Lett. 31 1041–4

[135] Pello J, Muneeb M, Keyvaninia S, van der Tol J J G M, Roelkens G and Smit M K 2013 Planar concave grating demultiplexers on an InP-membrane-on-silicon photonic platform IEEE Photonics Technol. Lett. 25 1969–72

[136] Jiao Y, Jiang Y and Tol J J G M V D 2015 Thermo-optic tuning of wavelength (de)multiplexers on InP membrane Proc. 20th Annual Symp. of the IEEE Photonics Benelux Chapter

[137] Tol J J G M V D, Felicetti M and Smit M K 2012 Increasing tolerance in passive integrated optical polarization converters J. Lightwave Technol. 30 2884–9

[138] Pello J, van der Tol J, Keyvaninia S, van Veldhoven R, Ambrosius H, Roelkens G and Smit M 2012 High-efficiency ultrasmall polarization converter in InP membrane Opt. Lett. 37 3711–3

[139] Reniers S, Pogoretskiy V, Williams K, Tol J V D and Jiao Y 2019 Towards the integration of an ultrashort polarization converter on the active-passive InP-membrane-on-silicon platform Proc. 24th Annual Symp. of the IEEE Photonics Society Benelux Chapter (Amsterdam, The Netherlands)

[140] Kashi A A, Tol J J G M V D, Jiao Y and Williams K A 2018 Development of plasmonic slot waveguide on InP membrane Proc. 23rd Annual Symp. of the IEEE Photonics Society Benelux Chapter (Brussel, Belgium)

[141] Eu H 2020 Project WIPE (available at: http://wipe.jeppix.eu)

[142] Meighan A, Wale M J and Williams K A 2017 Low resistance metal interconnection for direct wafer bonding of electronic to photonic ICs Proc. 22nd Annual Symp. of the IEEE Photonics Society Benelux Chapter (Delft, The Netherlands) pp 116–9

[143] Amemiya T, Kanazawa T, Hiratani T, Inoue D, Gu Z, Yamasaki S, Urakami T and Arai S 2017 Organic membrane photonic integrated circuits (OMPICs) Opt. Express 25 18537–52

[144] Cantatore E 2015 Printed Circuits and Their Applications: Which Way Forward? vol 9569 (SPIE)

[145] Pecunia V, Fattori M, Abdinia S, Sirringhaus H and Cantatore E 2018 Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics (Cambridge: Cambridge University Press)

[146] Hossain M, Weimann N, Lisker M, Meliani C, Tillack B, Krozer V and Heinrich W 2015 A 330 GHz hetero-integrated source in InP-on-BiCMOS technology 2015 IEEE MTT-S Int. Microwave Symp. pp 1–4

[147] Yokoyama M, Yasuda T, Takagi H, Yamada H, Fukuhara N, Hata M, Sugiyama M, Nakano Y, Takenaka M and Takagi S 2009 Thin body III–V-semiconductor-on-insulator metal–oxide–semiconductor field-effect transistors on Si fabricated using direct wafer bonding Appl. Phys. Express 2 124501

[148] Takenaka M, Kim Y, Han J, Kang J, Ikku Y, Cheng Y, Park J, Yoshida M, Takashima S and Takagi S 2017 Heterogeneous CMOS photonics based on SiGe/Ge and III–V semiconductors integrated on Si platform IEEE J. Sel. Top. Quantum Electron. 23 64–76

[149] Park J K, Takagi S and Takenaka M 2017 Monolithic integration of InGaAsP MZI modulator and InGaAs driver MOSFET using III-V CMOS photonics 2017 Optical Fiber Communications Conf. and Exhibition (OFC) pp 1–3

[150] Cheng Y, Ikku Y, Takenaka M and Takagi S 2016 Low-dark-current waveguide InGaAs metal–semiconductor–metal photodetector monolithically integrated with InP grating coupler on III–V CMOS photonics platform Japan. J. Appl. Phys. 55 04EH1

[151] Leuthold J et al 2013 Plasmonic communications: light on a wire Opt. Photonics News 24 28–35

[152] Eu H 2020 project ChipAI (available at: http://www.chipai.eu.)

[153] Koonen T 2018 Indoor optical wireless systems: technology, trends, and applications J. Lightwave Technol. 36 1459–67

[154] Koonen T, Oh J, Mekonnen K, Cao Z and Tangdiongga E 2016 Ultra-high capacity indoor optical wireless communication using 2D-steered pencil beams J. Lightwave Technol. 34 4802–9

[155] Yuqing J and Zizheng C 2018 Photonic integration technologies for indoor optical wireless communications Sci. China Inf. Sci. 61 080404

[156] Cao Z, Jiao Y, Shen L, Zhao X, Stabile R, Tol J J G M V D and Koonen T 2017 Ultra-high throughput indoor infrared wireless communication system enabled by a cascaded aperture optical receiver fabricated on InP membrane J. Lightwave Technol. 36 57–67

[157] Jiao Y, Cao Z, Shen L, Tol J V D and Koonen T 2018 Membrane-based receiver/transmitter for reconfigurable optical wireless beam-steering systems IEEE J. Sel. Top. Quantum Electron. 24 6100506

[158] Jiao Y, Kashi A A, Wang Y, Pogoretskiy V and Williams K 2019 IMOS integrated photonics for free-space sensing and communications Asia Communications and Photonics Conf. (ACPC) 2019 (Chengdu: Optical Society of America) p T3D.1

[159] Bozzola A, Carroll L, Gerace D, Cristiani I and Andreani L C 2015 Optimising apodized grating couplers in a pure SOI platform to −0.5 dB coupling efficiency Opt. Express 23 16289–304

[160] Kim S, Westly D A, Roxworthy B J, Li Q, Yulaev A, Srinivasan K and Aksyuk V A 2018 Photonic waveguide to free-space Gaussian beam extreme mode converter Light Sci. Appl. 7 72

[161] Genevet P, Capasso F, Aieta F, Khorasaninejad M and Devlin R 2017 Recent advances in planar optics: from plasmonic to dielectric metasurfaces Optica 4 139–52

[162] Su V-C, Chu C H, Sun G and Tsai D P 2018 Advances in optical metasurfaces: fabrication and applications [Invited] Opt. Express 26 13148–82

[163] Yulaev A, Zhu W, Zhang C, Westly D A, Lezec H J, Agrawal A and Aksyuk V 2019 Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control ACS Photonics 6 2902–9

[164] Velodyne LiDAR (available at: https://velodynelidar.com/)

[165] Kim T et al 2019 A single-chip optical phased array in a wafer-scale silicon photonics/CMOS 3D-integration platform IEEE J. Solid-State Circuits 54 3061–74

[166] Guo W, Binetti P R A, Althouse C, Masanovic M L, Ambrosius H P M M, Johansson L A and Coldren L A 2013 Two-dimensional optical beam steering with InP-based photonic integrated circuits IEEE J. Sel. Top. Quantum Electron. 19 6100212

[167] Hutchison D N, Sun J, Doylend J K, Kumar R, Heck J, Kim W, Phare C T, Feshali A and Rong H 2016 High-resolution aliasing-free optical beam steering Optica 3 887–90

[168] Zhang Y, Ling Y-C, Zhang K, Gentry C, Sadighi D, Whaley G, Colosimo J, Suni P and Ben Yoo S J 2019 Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering Opt. Express 27 1929–40

[169] Hulme J C, Doylend J K, Heck M J R, Peters J D, Davenport M L, Bovington J T, Coldren L A and Bowers J E 2015 Fully integrated hybrid silicon two dimensional beam scanner Opt. Express 23 5861–74

[170] Wang Z et al 2017 Novel light source integration approaches for silicon photonics Laser Photonics Rev. 11 1700063

[171] Hyundai P et al 2011 Device and integration technology for silicon photonic transmitters IEEE J. Sel. Top. Quantum Electron. 17 671–88

[172] Wang Y, Engelen J P V, Reniers S, Rijn M B J V, Zhang X, Cao Z, Calzadilla V, Williams K, Smit M K and Jiao Y 2021 InP-based grating antennas for high resolution optical beam steering IEEE J. Sel. Top. Quantum Electron. 27 6100107

[173] Liu T, Pagliano F, van Veldhoven R, Pogoretskiy V, Jiao Y and Fiore A 2020 Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth Nat. Commun. 11 2407

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る