リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment

Fujimoto, Kazuhiro J. Minowa, Fumika Nishina, Michiya Nakamura, Shunta Ohashi, Sayaka Katayama, Kota Kandori, Hideki Yanai, Takeshi 名古屋大学

2023.02.23

概要

The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG)
pigment possesses a unique Cl− binding site; however, its relationship to the spectral tuning in
green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural
modifications of the retinal binding site by Cl− binding. Herein, we report the computational
structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral
redshift and physicochemical relevance when Cl− is present. Our protein structures reflect the
previously suggested structural changes. AlphaFold2 failed to predict these structural changes.
Excited-state calculations successfully reproduced the experimental red-shifted absorption
energies, corroborating our protein structures. Electrostatic energy decomposition revealed that
the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and
Ala308; however, Cl− itself contributes to the blueshift. Site-directed mutagenesis supported our
analysis. These modeled structures may provide a valuable foundation for studying cone pigments. ...

参考文献

(1)

Wald, G., Molecular Basis of Visual Excitation. Science 1968, 162, 230-239.

(2)

Birge, R. R., Nature of the primary photochemical events in rhodopsin and

bacteriorhodopsin. Biochim. Biophys. Acta 1990, 1016, 293-327.

(3)

Callender, R.; Honig, B., RESONANCE RAMAN STUDIES OF VISUAL PIGMENTS.

Ann. Rev. Biophys. Bioeng. 1977, 6, 33-55.

(4)

Shichida, Y.; Imai, H., Visual pigment: G-protein-coupled receptor for light signals. Cell.

Mol. Life Sci. 1998, 54, 1299-1315.

(5)

Hampp, N., Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories.

Chem. Rev. 2000, 100, 1755-1776.

(6)

Mathies, R. A.; Lugtenburg, J. Chapter 2 the Primary Photoreaction of Rhodopsin. In

Handbook of Biological Physics, Stavenga, D. G.; Grip, W. J. d.; Pugh, E. N., Eds.; Elsevier

Science B. V.: Amsterdam, 2000; Vol. 3, pp 55-90.

(7)

Ernst, O. P.; Lodowski, D. T.; Elstner, M.; Hegemann, P.; Brown, L. S.; Kandori, H.,

Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev.

2014, 114, 126-163.

(8)

Kandori, H.; Schichida, Y.; Yoshisawa, T., Biochemistry (Moscow) 2001, 66, 1197.

(9)

Kochendoerfer, G. G.; Lin, S. W.; Sakmar, T. P.; Mathies, R. A., How color visual

pigments are tuned. Trends. Biochem. Sci. 1999, 24, 300-305.

(10)

Hirano, T.; Imai, H.; Kandori, H.; Shichida, Y., Chloride Effect on Iodopsin Studied by

Low-Temperature Visible and Infrared Spectroscopies. Biochemistry 2001, 40, 1385-1392.

(11)

Knowles, A., The effects of chloride ion upon chicken visual pigments. Biochem. Biophys.

Res. Commun. 1976, 73, 56-62.

24

(12)

Fager, L. Y.; Fager, R. S., Halide control of color of the chicken cone pigment iodopsin.

Exp. Eye Res. 1979, 29, 401-408.

(13)

Shichida, Y.; Kato, T.; Sasayama, S.; Fukada, Y.; Yoshizawa, T., Effects of chloride on

chicken iodopsin and the chromophore transfer reactions from iodopsin to scotopsin and Bphotopsin. Biochemistry 1990, 29, 5843-5848.

(14)

Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Trong,

I. L.; Teller, D. C.; Okada, T.; Stenkamp, R. E., et al., Crystal Structure of Rhodopsin: A G ProteinCoupled Receptor. Science 2000, 289, 739-745.

(15)

Teller, D. C.; Okada, T.; Behnke, C. A.; Palczewski, K.; Stenkamp, R. E., Advances in

Determination of a High-Resolution Three-Dimensional Structure of Rhodopsin, a Model of GProtein-Coupled Receptors (GPCRs). Biochemistry 2001, 40, 7761-7772.

(16)

Okada, T.; Fujiyoshi, Y.; Silow, M.; Navarro, J.; Landau, E. M.; Shichida, Y., Functional

role of internal water molecules in rhodopsin revealed by x-ray crystallography. Proc. Natl. Acad.

Sci. USA 2002, 99, 5982-5987.

(17)

Okada, T.; Sugihara, M.; Bondar, A.; Elstner, M.; Entel, P.; Buss, V., The Retinal

Conformation and its Environment in Rhodopsin in Light of a New 2.2 Å Crystal Structure. J. Mol.

Biol. 2004, 342, 571-583.

(18)

Li, J.; Edwards, P. C.; Burghammer, M.; Villa, C.; Schertler, G. F. X., Structure of Bovine

Rhodopsin in a Trigonal Crystal Form. J. Mol. Biol. 2004, 343, 1409-1438.

(19)

Makino, C. L.; Riley, C. K.; Looney, J.; Crouch, R. K.; Okada, T., Binding of More Than

One Retinoid to Visual Opsins. Biophys. J. 2010, 99, 2366-2373.

(20)

Katayama, K.; Furutani, Y.; Imai, H.; Kandori, H., An FTIR Study of Monkey Green- and

Red-Sensitive Visual Pigments. Angew. Chem. Int. Ed. 2010, 49, 891-894.

25

(21)

Katayama, K.; Furutani, Y.; Imai, H.; Kandori, H., Protein-Bound Water Molecules in

Primate Red- and Green-Sensitive Visual Pigments. Biochemistry 2012, 51, 1126-1133.

(22)

Katayama, K.; Furutani, Y.; Iwaki, M.; Fukuda, T.; Imai, H.; Kandori, H., ‘‘In situ’’

observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATRFTIR spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 3381-3387.

(23)

Katayama, K.; Nakamura, S.; Sasaki, T.; Imai, H.; Kandori, H., Role of Gln114 in Spectral

Tuning of a Long-Wavelength Sensitive Visual Pigment. Biochemistry 2019, 58, 2944-2952.

(24)

Warshel, A., Calculations of chemical processes in solutions. J. Phys. Chem. 1979, 83,

1640-1652.

(25)

Houjou, H.; Inoue, Y.; Sakurai, M., Physical Origin of the Opsin Shift of

Bacteriorhodopsin. Comprehensive Analysis Based on Medium Effect Theory of Absorption

Spectra. J. Am. Chem. Soc. 1998, 120, 4459-4470.

(26)

Hayashi, S.; Tajkhorshid, E.; Pebay-Peyroula, E.; Royant, A.; Landau, E. M.; Navarro, J.;

Schulten, K., Structural Determinants of Spectral Tuning in Retinal ProteinsBacteriorhodopsin vs

Sensory Rhodopsin II. J. Phys. Chem. B 2001, 105, 10124-10131.

(27)

Vreven, T.; Morokuma, K., Investigation of the S0 S1 excitation in bacteriorhodopsin with

the ONIOM(MO:MM) hybrid method. Theor. Chem. Acc. 2003, 109, 125-132.

(28)

Trabanino, R. J.; Vaidehi, N.; Goddard, W. A., III, Exploring the Molecular Mechanism

for Color Distinction in Humans. J. Phys. Chem. B 2006, 110, 17230-17239.

(29)

Fujimoto, K.; Hasegawa, J.; Hayashi, S.; Nakatsuji, H., On the color-tuning mechanism of

Human-Blue visual pigment: SAC-CI and QM/MM study. Chem. Phys. Letts. 2006, 432, 252-256.

(30)

Fujimoto, K.; Hasegawa, J.; Nakatsuji, H., Origin of color tuning in human red, green, and

blue cone pigments: SAC-CI and QM/MM study. Chem. Phys. Letts. 2008, 462, 318-320.

26

(31)

Fujimoto, K.; Hasegawa, J.; Nakatsuji, H., Color Tuning Mechanism of Human Red, Green,

and Blue Cone Pigments: SAC-CI Theoretical Study. Bull. Chem. Soc. Jpn. 2009, 82, 1140-1148.

(32)

Altun, A.; Yokoyama, S.; Morokuma, K., Color Tuning in Short Wavelength-Sensitive

Human and Mouse Visual Pigments: Ab initio Quantum Mechanics/Molecular Mechanics Studies.

J. Phys. Chem. A 2009, 113, 11685-11692.

(33)

Frähmcke, J. S.; Wanko, M.; Elstner, M., Building a Model of the Blue Cone Pigment

Based on the Wild Type Rhodopsin Structure with QM/MM Methods. J. Phys. Chem. B 2012, 116,

3313-3321.

(34)

Sekharan, S.; Katayama, K.; Kandori, H.; Morokuma, K., Color Vision: “OH-Site” Rule

for Seeing Red and Green. J. Am. Chem. Soc. 2012, 134, 10706-10712.

(35)

Ferré, N.; Olivucci, M., Probing the Rhodopsin Cavity with Reduced Retinal Models at the

CASPT2//CASSCF/AMBER Level of Theory. J. Am. Chem. Soc. 2003, 125, 6868-6869.

(36)

Andruniów, T.; Ferré, N.; Olivucci, M., Structure, initial excited-state relaxation, and

energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc.

Natl. Acad. Sci. USA 2004, 101, 17908-17913.

(37)

Hufen, J.; Sugihara, M.; Buss, V., How the Counterion Affects Ground- and Excited-State

Properties of the Rhodopsin Chromophore. J. Phys. Chem. B 2004, 108, 20419-20426.

(38)

Wanko, M.; Hoffmann, M.; Strodel, P.; Koslowski, A.; Thiel, W.; Neese, F.; Frauenheim,

T.; Elstner, M., Calculating Absorption Shifts for Retinal Proteins: Computational Challenges. J.

Phys. Chem. B 2005, 109, 3606-3615.

(39)

Coto, P. B.; Strambi, A.; Ferré, N.; Olivucci, M., The color of rhodopsins at the ab initio

multiconfigurational perturbation theory resolution. Proc. Natl. Acad. Sci. USA 2006, 103, 1715417159.

27

(40)

Gascón, J. A.; Sproviero, E. M.; Batista, V. S., Computational Studies of the Primary

Phototransduction Event in Visual Rhodopsin. Acc. Chem. Res. 2006, 39, 184-193.

(41)

Sekharan, S.; Sugihara, M.; Buss, V., Origin of Spectral Tuning in Rhodopsin—It Is Not

the Binding Pocket. Angew. Chem. Int. Ed. 2007, 46, 269-271.

(42)

Fujimoto, K.; Hayashi, S.; Hasegawa, J.; Nakatsuji, H., Theoretical Studies on the Color-

Tuning Mechanism in Retinal Proteins. J. Chem. Theory Comput. 2007, 3, 605-618.

(43)

Wanko, M.; Hoffmann, M.; Frähmcke, J.; Frauenheim, T.; Elstner, M., Effect of

Polarization on the Opsin Shift in Rhodopsins. 2. Empirical Polarization Models for Proteins. J.

Phys. Chem. B 2008, 112, 11468-11478.

(44)

Altun, A.; Yokoyama, S.; Morokuma, K., Mechanism of Spectral Tuning Going from

Retinal in Vacuo to Bovine Rhodopsin and its Mutants: Multireference ab Initio Quantum

Mechanics/Molecular Mechanics Studies. J. Phys. Chem. B 2008, 112, 16883-16890.

(45)

Altun, A.; Yokoyama, S.; Morokuma, K., Spectral Tuning in Visual Pigments: An

ONIOM(QM:MM) Study on Bovine Rhodopsin and its Mutants. J. Phys. Chem. B 2008, 112,

6814-6827.

(46)

Tomasello, G.; Olaso-González, G.; Altoè, P.; Stenta, M.; Serrano-Andrés, L.; Merchán,

M.; Orlandi, G.; Bottoni, A.; Garavelli, M., Electrostatic Control of the Photoisomerization

Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching. J.

Am. Chem. Soc. 2009, 131, 5172-5186.

(47)

Stenkamp, R. E.; Filipek, S.; Driessen, C. A. G. G.; Teller, D. C.; Palczewski, K., Crystal

Structure of Rhodopsin: a Template for Cone Visual Pigments and Other G Protein-Coupled

Receptors. Biochim. Biophys. Acta 2002, 1565, 168-182.

28

(48)

Asenjo, A. B.; Rim, J.; Oprian, D. D., Molecular Determinants of Human Red/Green Color

Discrimination. Neuron 1994, 12, 1131-1138.

(49)

Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K.,

ONIOM: A Multilayered Integrated MO+MM Method for Geometry Optimizations and Single

Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2+H2 Oxidative

Addition. J. Phys. Chem. 1996, 100, 19357-19363.

(50)

Wang, Z.; Asenjo, A. B.; Oprian, D. D., Identification of the Cl--Binding Site in the Human

Red and Green Color Vision Pigments. Biochemistry 1993, 32, 2125-2130.

(51)

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.;

Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A., et al., Highly accurate protein structure

prediction with AlphaFold. Nature 2021, 596, 583-589.

(52)

Nakatsuji, H., Cluster expansion of the wavefunction. Excited states. Chem. Phys. Lett.

1978, 59, 362-364.

(53)

Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange–correlation functional using

the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.

(54)

Andersson, K.; Malmqvist, P. A.; Roos, B. O.; Sadlej, A. J.; Wolinski, K., Second-order

perturbation theory with a casscf reference function. J. Phys. Chem. 1990, 94, 5483-5488.

(55)

Fujimoto, K. J.; Minoda, T.; Yanai, T., Spectral Tuning Mechanism of Photosynthetic

Light-Harvesting Complex II Revealed by Ab Initio Dimer Exciton Model. J. Phys. Chem. B 2021,

125, 10459-10470.

(56)

Fujimoto, K. J., Electronic Couplings and Electrostatic Interactions Behind the Light

Absorption of Retinal Proteins. Front. Mol. Biosci. 2021, 8, 752700.

29

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る