リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「V-type Asteroids as the Origin of Mesosiderites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

V-type Asteroids as the Origin of Mesosiderites

Libourel, Guy Beck, Pierre Nakamura, M. Akiko Vernazza, Pierre Ganino, Clement Michel, Patrick 神戸大学

2023.07.14

概要

We present the results of a campaign of hypervelocity impact experiments on natural mesosiderite targets, using representative main asteroid belt impact speeds. The objective is to document further the surface evolution of iron-rich asteroids. In contrast with iron meteorites, we demonstrate the fragile behavior of mesosiderite at impact since experiments result in both cratering and catastrophic disruption. The behavior of metal-rich asteroids at impact is thus highly influenced by the original ratio of metal/silicate. A visible to near-infrared spectral analysis shows that the pyroxene silicate signature of impacted mesosiderites, or their ejecta, is fully preserved. Our results thus rule out a mesosiderite hypothesis for the very nature of M/X-type asteroids including (16) Psyche, despite a small fraction of its surface possibly being covered by mesosiderite-like materials. Finally, we address the question of whether mesosiderites and howardite–eucrite–diogenite (HED) meteorites are genetically linked to (4) Vesta or other differentiated asteroids in the main belt based on their spectral similarity.

この論文で使われている画像

関連論文

参考文献

5. Conclusion

Beck, P., Barrat, J.-A., Grisolle, F., et al. 2011, Icar, 216, 560

Belskaya, I., Berdyugin, A., Krugly, Y., et al. 2022, A&A, 663, A146

Benedix, G. K., Bland, P. A., Friedrich, J. M., et al. 2017, GeCoA, 208, 145

Binzel, R. P., & Xu, S. 1993, Sci, 260, 186

Bottke, W. F., Jr., Nolan, M. C., Greenberg, R., & Kolvoord, R. A. 1994, Icar,

107, 255

Britt, D. T., & Consolmagno, S. J. G. J. 2003, M&PS, 38, 1161

Burbine, T. H., Greenwood, R. C., Buchanan, P. C., Franchi, I. A., &

Smith, C. L. 2007, LPSC, 39, 2119

Cambioni, S., de Kleer, K., & Shepard, M. 2022, JGRE, 127, e2021JE007091

Consolmagno, G. J., & Drake, M. J. 1977, GeCoA, 41, 1271

Davis, D. R., Farinella, P., & Marzari, F. 1999, Icar, 137, 140

de Kleer, K., Cambioni, S., & Shepard, M. 2021, PSJ, 2, 149

DellaGiustina, D. N., Burke, K. N., Walsh, K. J., et al. 2020, Sci, 370,

eabc3660

DeMeo, F. E., Binzel, R. P., Slivan, S. M., & Bus, S. J. 2009, Icar, 202, 160

DeMeo, F. E., & Carry, B. 2014, Natur, 505, 629

Dollfus, A., & Geake, J. E. 1977, RSPTA, 285, 397

Dollfus, A., Mandeville, J.-C., & Duseaux, M. 1979, Icar, 37, 124

Drummond, J. D., Merline, W. J., Carry, B., et al. 2018, Icar, 305, 174

Elkins-Tanton, L. T., Asphaug, E., Bell, J. F., et al. 2022, SSRv, 218, 17

Ferrais, M., Jorda, L., Vernazza, P., et al. 2022, A&A, 662, A71

Ferrais, M., Vernazza, P., Jorda, L., et al. 2020, A&A, 638, L15

Flynn, G. J., Consolmagno, G. J., Brown, P., & Macke, R. J. 2018, ChEG,

78, 269

Fornasier, S., Clark, B. E., Dotto, E., et al. 2010, Icar, 210, 655

Ganino, C., Libourel, G., Nakamura, A. M., & Michel, P. 2019, P&SS, 177,

104684

Gradie, J., & Tedesco, E. 1982, Sci, 216, 1405

Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A., & Burbine, T. H.

2006, Sci, 313, 1763

Grossman, J. 1999, M&PS, 34, A169

Haba, M. K., Wotzlaw, J.-F., Lai, Y.-J., Yamaguchi, A., & Schönbächler, M.

2019, NatGe, 12, 510

Hanuš, J., Viikinkoski, M., Marchis, F., et al. 2017, A&A, 601, A114

Hardersen, P. S. 2016, IRTF Asteroid NIR Reflectance Spectra V1.0. EAR-AI0046-3-HARDERSENSPEC-V1.0. NASA Planetary Data System, https://

pds.nasa.gov/ds-view/pds/viewDataset.jsp?dsid=EAR-A-I0046-3HARDERSENSPEC-V1.0

Hardersen, P., Gaffey, M., & Abell, P. 2005, Icar, 175, 141

Hassanzadeh, J., Rubin, A. E., & Wasson, J. T. 1990, GeCoA, 54, 3197

Hiroi, T., Binzel, R. P., Sunshine, J. M., Pieters, C. M., & Takeda, H. 1995,

Icar, 115, 374

Holsapple, K., Giblin, I., Housen, K., Nakamura, A., & Ryan, E. 2002, in

Asteroids III, ed. W. F. Bottke, Jr. et al. (Tucson, AZ: Univ. Arizona

Press), 443

Jarosewich, E. 1990, Meteoritics, 25, 323

Johnson, B. C., Sori, M. M., & Evans, A. J. 2019, NatAs, 4, 41

Jutzi, M., Holsapple, K., Wünneman, K., & Michel, P. 2015, in Asteroids IV,

ed. P. Michel, F. E. DeMeo, & W. F. Bottke (Tucson, AZ: Univ. Arizona

Press)

Katsura, T., Nakamura, A. M., Takabe, A., et al. 2014, Icar, 241, 1

Kawai, N., Tsurui, K., Hasegawa, S., & Sato, E. 2010, RScI, 81, 115105

Landsman, Z. A., Emery, J. P., Campins, H., et al. 2018, Icar, 304, 58

Lauretta, D. S., Goreva, J. S., Hill, D. H., et al. 2009, M&PS, 44, 823

Libourel, G., Nakamura, A. M., Beck, P., et al. 2019, SciA, 5, eaav3971

Macke, R. J., Britt, D. T., & Consolmagno, G. J. 2011, M&PS, 46, 311

Mahlke, M., Carry, B., & Mattei, P. -A 2022, A&A, 665, A26

Mansour, J. A., Popescu, M., & de León, J. 2018, EPSC, 12, 393

Hypervelocity experiments on iron-rich materials at representative main asteroid belt impact speeds give invaluable

insights on the evolution of regolith on iron-rich asteroids and

on the response of these bodies to hypervelocity impacts. After

our previous investigations of impacts on iron meteorites, this

study presents the results of a campaign of hypervelocity

impact experiments on natural mesosiderite targets.

We show:

1. The fragile behavior of mesosiderites at impact, since

experiments result in both cratering and catastrophic

disruption;

2. The influence of the original metal/silicate ratio on the

ductile/fragile behavior of metal-rich asteroids at

impact; and

3. The preservation of the initial vis–NIR spectral signature

in impacted mesosiderites and their ejecta, which

dominated by the spectra of pyroxene minerals characterized by their bands at 0.9 μm and 2 μm.

Our results thus rule out the mesosiderite hypothesis for the

very nature of M/X-type asteroids including (16) Psyche,

despite a small fraction of its surface possibly being covered by

mesosiderite-like materials. Finally, we address the question of

whether mesosiderites and HED meteorites are genetically

linked to (4) Vesta and conclude that mesosiderites may well

originate from other differentiated asteroids of the main belt.

Acknowledgments

This research was supported by the Hypervelocity Impact

Facility (formerly Space Plasma Laboratory), ISAS, JAXA,

Japan. The manuscript benefited from conversations with B.

Carry and P. Tanga. We also thank the two anonymous

reviewers for their constructive comments during the review

process and Faith Vilas for editorial handling. The Fédération

de Recherche Wolfgang Doeblin (FR 2800, CNRS), CNES, the

CNRS through the MITI interdisciplinary program “Evenements Rares” (INSU, CNRS) and the European Union’s

Horizon 2020 research and innovation program under grant

agreement No. 870377 (project NEO-MAPP) financially

supported this research.

Author contributions: A.M.N. prepared the impact experiments and performed them and P.B. carried out the reflectance

spectrometry of the impacted targets. G.L. and C.G. did the

textural, chemical, and mineralogical characterization of the

run samples. G.L., A.M.N., P.B., C.G., P.V., and P.M

interpreted the data and contributed to data analysis. G.L.

wrote the manuscript.

11

The Planetary Science Journal, 4:123 (12pp), 2023 July

Libourel et al.

Marchi, S., Durda, D. D., Polanskey, C. A., et al. 2020, JGRE, 125, e05927

Marchi, S., Ermakov, A. I., Raymond, C. A., et al. 2016, NatCo, 7, 12257

Matsui, T., & Schultz, P. H. 1984, JGR, 89, C323

Maurel, C., Michel, P., Owen, J. M., et al. 2020, Icar, 338, 113505

McCord, T. B., Adams, J. B., & Johnson, T. V. 1970, Sci, 168, 1445

Michikami, T., et al. 2019, Icar, 331, 179

Mittlefehldt, D. W. 1990, GeCoA, 54, 1165

Mittlefehldt, D. W. 1994, GeCoA, 58, 1537

Moskovitz, N. A., Willman, M., Burbine, T. H., Binzel, R. P., & Bus, S. J.

2010, Icar, 208, 773

Nichols-Fleming, F., Evans, A. J., Johnson, B. C., & Sori, M. M. 2022, JGRE,

127, e07063

Norton, O. R. 2002, Choice Rev Online, 40, 40

Ockert-Bell, M. E., Clark, B. E., Shepard, M. K., et al. 2010, Icar, 210, 674

Ogawa, R., Nakamura, A. M., Suzuki, A. I., & Hasegawa, S. 2021, Icar, 362,

114410

Paniello, R. C., Moynier, F., Beck, P., et al. 2012, GeCoA, 86, 76

Pommerol, A., & Schmitt, B. 2008, JGR, 113, E10009

Potin, S., Brissaud, O., Beck, P., et al. 2018, ApOpt, 57, 8279

Raducan, S. D., Davison, T. M., & Collins, G. S. 2020, JGRE, 125,

e2020JE006466

Rubin, A. E., & Mittlefehldt, D. W. 1992, GeCoA, 56, 827

Sanborn, M. E., & Yin, Q.-Z. 2014, LPSC, 45, 2018

Sanchez, J. A., Reddy, V., Shepard, M. K., et al. 2017, AJ, 153, 29

Scott, E. R. D., Haack, H., & Love, S. G. 2001, M&PS, 36, 869

Shepard, M. K., Clark, B. E., Ockert-Bell, M., et al. 2010, Icar, 208, 221

Shepard, M. K., Richardson, J., Taylor, P. A., et al. 2017, Icar, 281, 388

Shepard, M. K., Taylor, P. A., Nolan, M. C., et al. 2015, Icar, 245, 38

Sierks, H., Lamy, P., Barbieri, C., et al. 2011, Sci, 334, 487

Takir, D., Reddy, V., Sanchez, J. A., Shepard, M. K., & Emery, J. P. 2016, AJ,

153, 31

Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M., & Birlan, M. 2009,

Natur, 458, 993

Vernazza, P., Ferrais, M., Jorda, L., et al. 2021, A&A, 654, A56

Vernazza, P., Lamy, P., Groussin, O., et al. 2011, Icar, 216, 650

Viikinkoski, M., Vernazza, P., Hanuš, J., et al. 2018, A&A, 619, L3

Wadhwa, M., Shukolyukov, A., Davis, A., Lugmair, G., & Mittlefehldt, D.

2003, GeCoA, 67, 5047

Wasson, J. T., & Rubin, A. E. 1985, Natur, 318, 168

Weisberg, M. K., Prinz, M., Clayton, R. N., & Mayeda, T. K. 1993,

Geochimica et Cosmochimica Acta, 57, 1567

Weiss, B. P., Elkins-Tanton, L. T., Barucci, A. M., et al. 2012, P&SS, 66,

137

Zhang, C., Miao, B., & He, H. 2019, P&SS, 168, 83

Zhang, Z., Bercovici, D., & Elkins-Tanton, L. 2022, JGRE, 127,

e2022JE007343

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る