リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A history of mild shocks experienced by the regolith particles on hydrated asteroid Ryugu」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A history of mild shocks experienced by the regolith particles on hydrated asteroid Ryugu

Tomioka, Naotaka Yamaguchi, Akira Ito, Motoo Uesugi, Masayuki Imae, Naoya Shirai, Naoki Ohigashi, Takuji Kimura, Makoto Liu, Ming-Chang Greenwood, Richard C. Uesugi, Kentaro Nakato, Aiko Yogata, Kasumi Yuzawa, Hayato Kodama, Yu Hirahara, Kaori Sakurai, Ikuya Okada, Ikuo Karouji, Yuzuru Okazaki, Keishi Kurosawa, Kosuke Noguchi, Takaaki Miyake, Akira Miyahara, Masaaki Seto, Yusuke Matsumoto, Toru Igami, Yohei Nakazawa, Satoru Okada, Tatsuaki Saiki, Takanao Tanaka, Satoshi Terui, Fuyuto Yoshikawa, Makoto Miyazaki, Akiko Nishimura, Masahiro Yada, Toru Abe, Masanao Usui, Tomohiro Watanabe, Sei-ichiro Tsuda, Yuichi 京都大学 DOI:10.1038/s41550-023-01947-5

2023.06

概要

Micrometeorites, a possible major source of Earth’s water, are thought to form from explosive dispersal of hydrated chondritic materials during impact events on their parental asteroids. However, this provenance and formation mechanism have yet to be directly confirmed using asteroid returned samples. Here, we report evidence of mild shock metamorphism in the surface particles of asteroid Ryugu based on electron microscopy. All particles are dominated by phyllosilicates but lack dehydration textures, which are indicative of shock-heating temperatures below ~500 °C. Microfault-like textures associated with extensively shock-deformed framboidal magnetites and a high-pressure polymorph of Fe–Cr–sulfide have been identified. These findings indicate that the average peak pressure was ~2 GPa. The vast majority of ejecta formed during impact on Ryugu-like asteroids would be hydrated materials, larger than a millimetre, originating far from the impact point. These characteristics are inconsistent with current micrometeorite production models, and consequently, a new formation mechanism is required.

この論文で使われている画像

関連論文

参考文献

1. 2. 3. 4. Gillet, P. & El Goresy, A. Shock events in the Solar System: the

message from minerals in terrestrial planets and asteroids. Annu.

Rev. Earth Planet. Sci. 41, 257–285 (2013).

Stöffler, D., Hamann, C. & Metzler, K. Shock metamorphism of

planetary silicate rocks and sediments: proposal for an updated

classification system. Meteorit. Planet. Sci. 53, 5–49 (2018).

McSween, H. Y. Meteorites and Their Parent Planets (Cambridge

University Press, 1999).

Sharp, T. G. & Decarli, P. in Meteorites and the Early Solar System

II (eds Lauretta, D. S. & McSween, H. Y.) 653–677 (Univ. of Arizona

Press, 2006).

674

Article

5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Bischoff, A., Schleiting, M., Wieler, R. & Patzek, M. Brecciation

among 2280 ordinary chondrites: constraints on the evolution

of their parent bodies. Geochim. Cosmochim. Acta 238, 516–541

(2018).

Miyahara, M. et al. Systematic investigations of high‐pressure

polymorphs in shocked ordinary chondrites. Meteorit. Planet. Sci.

55, 2619–2651 (2020).

Ohtani, E. et al. Formation of high-pressure minerals in

shocked L6 chondrite Yamato 791384: constraints on shock

conditions and parent body size. Earth Planet. Sci. Lett. 227,

505–515 (2004).

Xie, Z., Sharp, T. G. & DeCarli, P. S. High-pressure phases in a

shock-induced melt vein of the Tenham L6 chondrite: constraints

on shock pressure and duration. Geochim. Cosmochim. Acta 70,

504–515 (2006).

Kaneko, S. et al. Discovery of stishovite in Apollo 15299 sample.

Am. Mineral. 100, 1308–1311 (2015).

Crow, C. A., Moser, D. E. & McKeegan, K. D. Shock metamorphic

history of >4 Ga Apollo 14 and 15 zircons. Meteorit. Planet. Sci. 54,

181–201 (2018).

Zolensky, M. et al. Mineralogy and petrology of comet 81P/Wild2

nucleus samples. Science 314, 1735–1739 (2006).

Tomeoka, K., Tomioka, N. & Ohnishi, I. Silicate minerals and Si-O

glass in Comet Wild 2 samples: transmission electron microscope

study. Meteorit. Planet. Sci. 43, 273–284 (2008).

Nakamura, T. et al. Itokawa dust particles: a direct link between

S-type asteroids and ordinary chondrites. Science 333, 1113–1116

(2011).

Nakamura, E. et al. Space environment of an asteroid preserved

on micrograins returned by the Hayabusa spacecraft. Proc. Natl

Acad. Sci. USA 109, E624–E629 (2012).

Noguchi, T. et al. An attempt to identify minerals in the Itokawa

dust particles by micro-Raman spectroscopy. Bunseki Kagaku 61,

299–310 (2012).

Zolensky, M. et al. Measuring the shock stage of Itokawa and

asteroid regolith grains by electron backscattered diffraction,

optical petrography, and synchrotron X‐ray diffraction. Meteorit.

Planet. Sci. 57, 1060–1078 (2022).

Genge, M. J., Grady, M. & Hutchison, R. The textures and

compositions of fine-grained Antarctic micrometeorites:

implications for comparisons with meteorites. Geochim.

Cosmochim. Acta 61, 5149–5162 (1997).

Engrand, C. & Maurette, M. Carbonaceous micrometeorites from

Antarctica. Meteorit. Planet. Sci. 33, 565–580 (1998).

Taylor, S., Lever, J. H. & Harvey, R. P. Accretion rate of cosmic

spherules measured at the South Pole. Nature 392, 899–903

(1998).

Nakamura, T., Noguchi, T., Yada, T., Nakamuta, Y. & Takaoka, N.

Bulk mineralogy of individual micrometeorites determined by

X-ray diffraction analysis and transmission electron microscopy.

Geochim. Cosmochim. Acta 65, 4385–4397 (2001).

Noguchi, T., Nakamura, T. & Nozaki, W. Mineralogy of

phyllosilicate-rich micrometeorites and comparison with

Tagish Lake and Sayama meteorites. Earth Planet. Sci. Lett. 202,

229–246 (2002).

Scott, E. R. D., Keil, K. & Stöffler, D. Shock metemorphism of

carbonaceous chondrites. Geochim. Cosmochim. Acta 56,

4281–4293 (1992).

Tomeoka, K., Kiriyama, K., Nakamura, K., Yamahana, Y. & Sekine,

T. Interplanetary dust from the explosive dispersal of hydrated

asteroids by impacts. Nature 423, 60–62 (2003).

Tomioka, N., Tomeoka, K., Nakamura-Messenger, K. & Sekine,

T. Heating effects of the matrix of experimentally shocked

Murchison CM chondrite: comparison with micrometeorites.

Meteorit. Planet. Sci. 42, 19–30 (2007).

Nature Astronomy | Volume 7 | June 2023 | 669–677

https://doi.org/10.1038/s41550-023-01947-5

25. Yada, T. et al. Preliminary analysis of the Hayabusa2 samples

returned from C-type asteroid Ryugu. Nat. Astron. 6, 214–220

(2022).

26. Greenwood, R. C. et al. Oxygen isotope evidence from Ryugu

samples for early water delivery to Earth by CI chondrites. Nat.

Astron. 7, 29–38 (2023).

27. Ito, M. et al. A pristine record of outer Solar System materials

from asteroid Ryugu’s returned sample. Nat. Astron. 6, 1163–1171

(2022).

28. Liu, M.-C. et al. Incorporation of 16O-rich anhydrous silicates in

the protolith of highly hydrated asteroid Ryugu. Nat. Astron. 6,

1172–1177 (2022).

29. McCain, K. A. et al. Early fluid activity on Ryugu inferred by

isotopic analyses of carbonates and magnetite. Nat. Astron. 7,

309–317 (2023).

30. Nakamura, E. et al. On the origin and evolution of the asteroid

Ryugu: a comprehensive geochemical perspective. Proc. Jpn.

Acad. Ser. B 98, 227–282 (2022).

31. Nakamura, T. et al. Formation and evolution of carbonaceous

asteroid Ryugu: direct evidence from returned samples. Science

379, eabn8671 (2022).

32. Yamaguchi, A. et al. Insight into multistep geological

evolution of C-type asteroids from Ryugu particles. Nat. Astron.

https://doi.org/10.1038/s41550-023-01925-x (2023).

33. Yokoyama, T. et al. Samples returned from the asteroid Ryugu

are similar to Ivuna-type carbonaceous meteorites. Science 379

https://doi.org/10.1126/science.abn7850 (2022).

34. Tomeoka, K. & Buseck, P. R. Matrix mineralogy of the Orgueil

CI carbonaceous chondrite. Geochim. Cosmochim. Acta 52,

1627–1640 (1988).

35. King, A. J., Schofield, P. F., Howard, K. T. & Russell, S. S. Modal

mineralogy of CI and CI-like chondrites by X-ray diffraction.

Geochim. Cosmochim. Acta 165, 148–160 (2015).

36. Alfing, J., Patzek, M. & Bischoff, A. Modal abundances of

coarse-grained (>5 μm) components within CI-chondrites and

their individual clasts: mixing of various lithologies on the CI

parent body(ies). Geochemistry 79, 125532 (2019).

37. Tomeoka, K., Yamahana, Y. & Sekine, T. Experimental shock

metamorphism of the Murchison CM carbonaceous chondrite.

Geochim. Cosmochim. Acta 63, 3683–3703 (1999).

38. Ma, C. & Rubin A. E. Zolenskyite, FeCr2S4, a new sulfide mineral

from the Indarch meteorite. Am. Mineral. 107, 1030–1033 (2022).

39. Kanamori, H., Anderson, D. L. & Heaton, T. H. Frictional melting

during the rupture of the 1994 Bolivian earthquake. Science 279,

839–842 (1998).

40. Jaeger, J. C., Cook, N. G. & Zimmerman, R. Fundamentals of Rock

Mechanics (Wiley, 2009).

41. Sugita, S. et al. The geomorphology, color, and thermal

properties of Ryugu: implications for parent-body processes.

Science 364, eaaw0422 (2019).

42. Jurewicz, A. J. G., Mittlefehldt, D. W. & Jones, J. H. Experimental

partial melting of the Allende (CV) and Murchison (CM)

chondrites and the origin of asteroidal basalts. Geochim.

Cosmochim. Acta 57, 2123–2139 (1993).

43. Hirose, T. & Bystricky, M. Extreme dynamic weakening of faults

during dehydration by coseismic shear heating. Geophys. Res.

Lett. 34, L14311 (2007).

44. Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471,

494–498 (2011).

45. Akai, J. T-T-T diagram of serpentine and saponite, and estimation

of metamorphic heating degree of antarctic carbonaceous

chondrites. Proc. NIPR Symp. Antarct. Meteor. 5, 120–135 (1992).

46. Bland, P. A. et al. Pressure-temperature evolution of primordial

solar system solids during impact-induced compaction. Nat.

Commun. 5, 5451 (2014).

675

Article

47. Tressler, R. E., Hummel, F. A. & Stubican, V. S.

Pressure-temperature study of sulfospinels. J. Am. Ceram. Soc. 51,

648–651 (1968).

48. Raccah, P. M., Bouchard, R. J. & Wold, A. Crystallographic study of

chromium spinels. J. Appl. Phys. 37, 1436–1437 (1966).

49. Noguchi, T. et al. A dehydrated space weathered skin cloaking the

hydrated interior of Ryugu. Nat. Astron. 7, 170–181 (2023).

50. Brearley, A. in Meteorites and the Early Solar System II (eds

Lauretta, D. S. & McSween, H. Y.) 587–624 (Univ. of Arizona Press,

2006).

51. Grimm, R. E. & McSween, H. Y. Heliocentric zoning of the asteroid

belt by aluminum-26 heating. Science 259, 653–655 (1993).

52. Morota, T. et al. Sample collection from asteroid (162173) Ryugu

by Hayabusa2: implications for surface evolution. Science 368,

654–659 (2020).

53. McSween, H. Y. et al. Carbonaceous chondrites as analogs for

the composition and alteration of Ceres. Meteorit. Planet. Sci. 53,

1793–1804 (2018).

54. Kurosawa, K. et al. Ryugu’s observed volatile loss did not arise

from impact heating alone. Commun. Earth Environ. 2, 146 (2021).

55. Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. Velocity

distributions among colliding asteroids. Icarus 107, 255–268

(1994).

56. Baldwin, B. & Sheaffer, Y. Ablation and breakup of large

meteoroids during atmospheric entry. J. Geophys. Res. 76,

4653–4668 (1971).

57. Popova, O. et al. Very low strengths of interplanetary meteoroids

and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).

58. Okazaki, R. et al. Mineralogy and noble gas isotopes of

micrometeorites collected from Antarctic snow. Earth Planets

Space 67, 90 (2015).

59. Hergenrother, C. W., Adam, C. D., Chesley, S. R. & Lauretta, D.

S. Introduction to the special issue: exploration of the activity

of asteroid (101955) Bennu. J. Geophys. Res. Planets 125,

e2020JE006549 (2020).

60. Ito, M. et al. The universal sample holders of microanalytical

instruments of FIB, TEM, NanoSIMS, and STXM-NEXAFS for the

coordinated analysis of extraterrestrial materials. Earth Planets

Space 72, 133 (2020).

61. Ramsay, J. G. Shear zone geometry: a review. J. Struct. Geol. 2,

83–99 (1980).

62. Rae, A. S. P., Poelchau, M. H. & Kenkmann, T. Stress and strain

during shock metamorphism. Icarus 370, 114687 (2021).

Acknowledgements

We thank all the scientists and engineers of the Hayabusa2 project for

their dedication and skills to bring these precious particles back to

Earth from the asteroid Ryugu. We also thank Marine Works Japan for

the assistance of curative activity, initial non-destructive investigation

and sample preparation of Ryugu particles. We thank the developers

of iSALE, including G. Collins, K. Wünnemann, B. Ivanov, J. Melosh

and D. Elbeshausen. We also thank T. Davison for the development

of pySALEPlot. The shock physics modelling was in part carried out

on PC cluster at the Center for Computational Astrophysics, National

Astronomical Observatory of Japan. This research was supported in

part by the JSPS KAKENHI (Grants JP20H01965 to N.T.; JP18K18795

and JP18H04468 to M.I.; JP19H01959 to A.Y.; JP18H05479 (Innovative

Areas MFS Materials Science) to M.U.; JP18K03729 to M.K.; JP21K03652

to N.I.; JP17H06459 to T.U.; JP19K03958 to M.A.; JP17H06459 to T.

Ohigashi; JP18K03830 to T.Y.; JP17H06459 and JP19H01951 to S.-i.W.;

https://doi.org/10.1038/s41550-023-01947-5

and JP18KK0092, JP19H00726, JP21K18660 and JP21H01140 to K.K.)

and by the National Institute of Polar Research Research Project (Grant

KP307 to A.Y.).

Author contributions

N.T., M.I. and A.Y. organized the research project. N.T., M.I., A.Y., M.U.,

N.I., N.S., T.Ohigashi, M.K. M-C.L., R.C.G., K.U., A.N., K.Y., H.Y. and

Y.Kodama conducted sample handling, preparation and mounting

processes of Ryugu grains. M.I., N.T., T.Ohigashi, M.U., K.U., H.Y.,

Y.Kodama, K.H., I.S., I.O. and Y.Karouji developed universal sample

holders for multiple instruments. Scanning electron microscopy

analysis was conducted by A.Y., M.K., N.I., M.I. and N.T. Focused

ion beam sample processing was conducted by Y.Kodama and

N.T. Transmission electron microscopy work was done by N.T. Fault

mechanics calculations were conducted by N.T. and K.O., and peak

pressure caused by the small carry-on impactor was evaluated by K.K.

T.N., A.Miyake, M.M., Y.S. T.M. and Y.I. provided valuable comments and

discussion on the mineralogy of Ryugu particles and carbonaceous

chondrites. A.N., K.Y., A.Miyazaki, M.N., T.Y., T.Okada, M.A. and T.U. led

the JAXA curation activities for initial characterization of allocated

Ryugu particles. S.N., T.S., S.T., F.T., M.Y., S.-i.W. and Y.T. administered the

project and acted as principal investigators. N.T. wrote the paper, and

all the authors discussed the results and commented on the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41550-023-01947-5.

Correspondence and requests for materials should be addressed to

Naotaka Tomioka.

Peer review information Nature Astronomy thanks Christopher

Hamann and the other, anonymous, reviewer(s) for their contribution

to the peer review of this work.

Reprints and permissions information is available at

www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2023

Kochi Institute for Core Sample Research, X-star, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan. 2National Institute of

Polar Research, Tachikawa, Japan. 3The Graduate University for Advanced Studies, Hayama, Japan. 4Japan Synchrotron Radiation Research Institute,

Sayo, Japan. 5Graduate School of Science, Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan. 6Department of Chemistry,

Nature Astronomy | Volume 7 | June 2023 | 669–677

676

Article

https://doi.org/10.1038/s41550-023-01947-5

Faculty of Science, Kanagawa University, Hiratsuka, Japan. 7UVSOR Synchrotron Facility, Institute for Molecular Science, Okazaki, Japan. 8Institute of

Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan. 9Department of Earth, Planetary, and Space Sciences,

University of California, Los Angeles, CA, USA. 10Planetary and Space Sciences, The Open University, Milton Keynes, UK. 11Institute of Space and

Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan. 12Marine Works Japan, Ltd., Yokosuka, Japan. 13Department

of Mechanical Engineering, Osaka University, Suita, Japan. 14Synchrotron Radiation Research Center, Nagoya University, Nagoya, Japan. 15Earth

and Planetary Systems Science Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima,

Japan. 16Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan. 17Division of Earth and Planetary Sciences, Kyoto

University, Kyoto, Japan. 18Department of Geosciences, Osaka Metropolitan University, Osaka, Japan. 19Kanagawa Institute of Technology, Atsugi,

Japan. 20Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan. 21Present address: Lawrence Livermore National Laboratory,

Livermore, CA, USA. 22Present address: Toyo Corporation, Tokyo, Japan. e-mail: tomioka@jamstec.go.jp

Nature Astronomy | Volume 7 | June 2023 | 669–677

677

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る