リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analysis of absolute amounts of two meiotic cohesin subunits, RAD21L and REC8, in mouse spermatocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analysis of absolute amounts of two meiotic cohesin subunits, RAD21L and REC8, in mouse spermatocytes

Taniuchi, Yuto Hiraide, Kazutaka Su, Rilige Ijuin, Kazune Wei, Xingqiang Horii, Takuro Hatada, Izuho Lee, Jibak 神戸大学

2023

概要

RAD2lL and REC8, meiosis-specific paralogs of the canonical cohesin subunit RAD21, are essential for proper formation of axial/lateral elements of the synaptonemal complex, synapsis of homologous chromosomes, and crossover recombination in mammalian meiosis. However, how many meiotic cohesins are present in germ cells has not been investigated because of the lack of an appropriate method of analysis. In the present study, to examine the intracellular amount of meiotic cohesins, we generated two strains of knock-in (KI) mice that expressed a 3×FLAG-tag at the C-terminus of RAD21L or REC8 protein using the CRISPR/Cas9 genome editing system. Both KI mice were fertile. Western blot analyses and immunocytochemical studies revealed that expression levels and localization patterns of both RAD21L-3×FLAG and REC8-3×FLAG in KI mice were similar to those in wild-type mice. After confirming that tagging of endogenous RAD21L and REC8 with 3×FLAG did not affect their expression profiles, we evaluated the levels of RAD21L-3×FLAG and REC8-3×FLAG in the testes of 2-week-old mice in which only RAD21L and REC8 but little RAD21 are expressed in the meiocytes. By comparing the band intensities of testicular RAD21L-3×FLAG and REC8-3×FLAG with 3×FLAG-tagged recombinant proteins of known concentrations in western blot analysis, we found that there were approximately 413,000 RAD21L and 453,000 REC8 molecules per spermatocyte in the early stages of prophase I. These findings provide new insights into the role played by cohesins in the process of meiotic chromosome organization in mammalian germ cells.

この論文で使われている画像

参考文献

1. Page SL, Hawley RS. The genetics and molecular biology of the synaptonemal complex.

Annu Rev Cell Dev Biol 2004; 20: 525–558. [Medline] [CrossRef]

2. Keeney S. Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol

2001; 52: 1–53. [Medline] [CrossRef]

3. Gray S, Cohen PE. Control of meiotic crossovers: From double-strand break formation to

designation. Annu Rev Genet 2016; 50: 175–210. [Medline] [CrossRef]

4. Losada A, Hirano T. Dynamic molecular linkers of the genome: the first decade of SMC

proteins. Genes Dev 2005; 19: 1269–1287. [Medline] [CrossRef]

5. Peters JM, Tedeschi A, Schmitz J. The cohesin complex and its roles in chromosome

biology. Genes Dev 2008; 22: 3089–3114. [Medline] [CrossRef]

6. Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D. A handcuff model for the

cohesin complex. J Cell Biol 2008; 183: 1019–1031. [Medline] [CrossRef]

7. Nasmyth K, Haering CH. Cohesin: its roles and mechanisms. Annu Rev Genet 2009; 43:

525–558. [Medline] [CrossRef]

8. Stigler J, Çamdere GÖ, Koshland DE, Greene EC. Single-molecule imaging reveals a

collapsed conformational state for dna-bound cohesin. Cell Reports 2016; 15: 988–998.

[Medline] [CrossRef]

9. Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR,

Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J,

Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander

ES, Aiden EL. Cohesin loss eliminates all loop domains. Cell 2017; 171: 305–320.e24.

[Medline] [CrossRef]

10. Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie

Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F. Two independent modes of

chromatin organization revealed by cohesin removal. Nature 2017; 551: 51–56. [Medline]

[CrossRef]

11. Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S,

Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg

J, Zuber J, Fraser P, Peters JM. Topologically associating domains and chromatin loops

depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 2017;

36: 3573–3599. [Medline] [CrossRef]

12. Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R. Novel meiosis-specific

isoform of mammalian SMC1. Mol Cell Biol 2001; 21: 6984–6998. [Medline] [CrossRef]

13. Prieto I, Suja JA, Pezzi N, Kremer L, Martínez-A C, Rufas JS, Barbero JL. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol

2001; 3: 761–766. [Medline] [CrossRef]

14. Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C. Meiotic cohesin REC8

marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and

SMC3. J Cell Biol 2003; 160: 657–670. [Medline] [CrossRef]

15. Lee J, Iwai T, Yokota T, Yamashita M. Temporally and spatially selective loss of Rec8

protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 2003; 116:

2781–2790. [Medline] [CrossRef]

16. Gutiérrez-Caballero C, Herrán Y, Sánchez-Martín M, Suja JA, Barbero JL, Llano

E, Pendás AM. Identification and molecular characterization of the mammalian α-kleisin

RAD21L. Cell Cycle 2011; 10: 1477–1487. [Medline] [CrossRef]

17. Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y. A new meiosisspecific cohesin complex implicated in the cohesin code for homologous pairing. EMBO

Rep 2011; 12: 267–275. [Medline] [CrossRef]

18. Lee J, Hirano T. RAD21L, a novel cohesin subunit implicated in linking homologous

chromosomes in mammalian meiosis. J Cell Biol 2011; 192: 263–276. [Medline] [CrossRef]

19. Lee J. Chapter 15: The regulation and function of cohesin and condensin in mammalian

oocytes and spermatocytes. In: Kloc M (ed.), Oocytes -Maternal information and functions, Springer, Results and Problems in Cell Differentiation. 2017; 63: 355–372.

20. Ishiguro KI. The cohesin complex in mammalian meiosis. Genes Cells 2019; 24: 6–30.

[Medline] [CrossRef]

21. Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC. Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8. Genesis 2004;

40: 184–194. [Medline] [CrossRef]

22. Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ. Absence of mouse

REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 2005; 8:

949–961. [Medline] [CrossRef]

23. Herrán Y, Gutiérrez-Caballero C, Sánchez-Martín M, Hernández T, Viera A, Barbero JL, de Álava E, de Rooij DG, Suja JA, Llano E, Pendás AM. The cohesin subunit

RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO

J 2011; 30: 3091–3105. [Medline] [CrossRef]

24. Llano E, Herrán Y, García-Tuñón I, Gutiérrez-Caballero C, de Álava E, Barbero

JL, Schimenti J, de Rooij DG, Sánchez-Martín M, Pendás AM. Meiotic cohesin complexes are essential for the formation of the axial element in mice. J Cell Biol 2012; 197:

877–885. [Medline] [CrossRef]

25. Ishiguro K, Kim J, Shibuya H, Hernández-Hernández A, Suzuki A, Fukagawa T,

Shioi G, Kiyonari H, Li XC, Schimenti J, Höög C, Watanabe Y. Meiosis-specific

cohesin mediates homolog recognition in mouse spermatocytes. Genes Dev 2014; 28:

594–607. [Medline] [CrossRef]

26. Biswas U, Wetzker C, Lange J, Christodoulou EG, Seifert M, Beyer A, Jessberger

R. Meiotic cohesin SMC1β provides prophase I centromeric cohesion and is required

for multiple synapsis-associated functions. PLoS Genet 2013; 9: e1003985. [Medline]

[CrossRef]

27. Vara C, Paytuví-Gallart A, Cuartero Y, Le Dily F, Garcia F, Salvà-Castro J, GómezH L, Julià E, Moutinho C, Aiese Cigliano R, Sanseverino W, Fornas O, Pendás AM,

Heyn H, Waters PD, Marti-Renom MA, Ruiz-Herrera A. Three-dimensional genomic

structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Reports 2019; 28: 352–367.e9. [Medline] [CrossRef]

28. Horii T, Morita S, Kimura M, Terawaki N, Shibutani M, Hatada I. Efficient generation of conditional knockout mice via sequential introduction of lox sites. Sci Rep 2017; 7:

7891. [Medline] [CrossRef]

29. Heyting C, Dietrich AJ. Meiotic chromosome preparation and protein labeling. Methods

Cell Biol 1991; 35: 177–202. [Medline] [CrossRef]

30. Bellvé AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J

Cell Biol 1977; 74: 68–85. [Medline] [CrossRef]

31. Drumond AL, Meistrich ML, Chiarini-Garcia H. Spermatogonial morphology and

kinetics during testis development in mice: a high-resolution light microscopy approach.

Reproduction 2011; 142: 145–155. [Medline] [CrossRef]

32. Grey C, de Massy B. Chromosome organization in early meiotic prophase. Front Cell

Dev Biol 2021; 9: 688878. [Medline] [CrossRef]

33. Prieto I, Pezzi N, Buesa JM, Kremer L, Barthelemy I, Carreiro C, Roncal F, Martínez A, Gómez L, Fernández R, Martínez-A C, Barbero JL. STAG2 and Rad21

mammalian mitotic cohesins are implicated in meiosis. EMBO Rep 2002; 3: 543–550.

[Medline] [CrossRef]

34. Holzmann J, Politi AZ, Nagasaka K, Hantsche-Grininger M, Walther N, Koch B,

Fuchs J, Dürnberger G, Tang W, Ladurner R, Stocsits RR, Busslinger GA, Novák B,

Mechtler K, Davidson IF, Ellenberg J, Peters JM. Absolute quantification of cohesin,

CTCF and their regulators in human cells. eLife 2019; 8: e46269. [Medline] [CrossRef]

35. Cattoglio C, Pustova I, Walther N, Ho JJ, Hantsche-Grininger M, Inouye CJ, Hossain MJ, Dailey GM, Ellenberg J, Darzacq X, Tjian R, Hansen AS. Determining

cellular CTCF and cohesin abundances to constrain 3D genome models. eLife 2019; 8:

e40164. [Medline] [CrossRef]

36. Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H,

Jessberger R. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister

chromatid cohesion and DNA recombination. Nat Cell Biol 2004; 6: 555–562. [Medline]

[CrossRef]

37. Winters T, McNicoll F, Jessberger R. Meiotic cohesin STAG3 is required for chromosome axis formation and sister chromatid cohesion. EMBO J 2014; 33: 1256–1270.

[Medline] [CrossRef]

38. Pelttari J, Hoja M-R, Yuan L, Liu JG, Brundell E, Moens P, Santucci-Darmanin S,

Jessberger R, Barbero JL, Heyting C, Höög C. A meiotic chromosomal core consisting

of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis

in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 2001; 21:

5667–5677. [Medline] [CrossRef]

39. Tedeschi A, Wutz G, Huet S, Jaritz M, Wuensche A, Schirghuber E, Davidson IF,

Tang W, Cisneros DA, Bhaskara V, Nishiyama T, Vaziri A, Wutz A, Ellenberg J,

Peters J-M. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 2013; 501: 564–568. [Medline] [CrossRef]

40. Patel L, Kang R, Rosenberg SC, Qiu Y, Raviram R, Chee S, Hu R, Ren B, Cole F,

Corbett KD. Dynamic reorganization of the genome shapes the recombination landscape

in meiotic prophase. Nat Struct Mol Biol 2019; 26: 164–174. [Medline] [CrossRef]

41. Biswas U, Stevense M, Jessberger R. SMC1 alpha substitutes for many meiotic functions

of SMC1beta but cannot protect telomeres from damage. Curr Biol 2018; 28: 249–261.e4.

[Medline] [CrossRef]

42. Agostinho A, Manneberg O, van Schendel R, Hernández-Hernández A, Kouznetsova

A, Blom H, Brismar H, Höög C. High density of REC8 constrains sister chromatid

axes and prevents illegitimate synaptonemal complex formation. EMBO Rep 2016; 17:

901–913. [Medline] [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る