リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phosphorylation of the anaphase promoting complex activator FZR1/CDH1 is required for meiosis II entry in mouse male germ cell (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phosphorylation of the anaphase promoting complex activator FZR1/CDH1 is required for meiosis II entry in mouse male germ cell (本文)

丹野, 修宏 慶應義塾大学

2020.09.21

概要

FZR1/CDH1 is an activator of Anaphase promoting complex/Cyclosome (APC/C), best known for its role as E3 ubiquitin ligase that drives the cell cycle. APC/C activity is regulated by CDK-mediated phosphorylation of FZR1 during mitotic cell cycle. Although the critical role of FZR1 phosphorylation has been shown mainly in yeast and in vitro cell culture studies, its biological significance in mammalian tissues in vivo remained elusive. Here, we examined the in vivo role of FZR1 phosphorylation using a mouse model, in which non-phosphorylatable substitutions were introduced in the putative CDK- phosphorylation sites of FZR1. Although ablation of FZR1 phosphorylation did not show substantial consequences in mouse somatic tissues, it led to severe testicular defects resulting in male infertility. In the absence of FZR1 phosphorylation, male juvenile germ cells entered meiosis normally but failed to enter meiosis II or form differentiated spermatids. In aged testis, male mutant germ cells were overall abolished, showing Sertoli cell-only phenotype. In contrast, female mutants showed apparently normal progression of meiosis. The present study demonstrated that phosphorylation of FZR1 is required for temporal regulation of APC/C activity at meiosis II entry, and for maintenance of spermatogonia, which raised an insight into the sexual dimorphism of FZR1-regulation in germ cells.

この論文で使われている画像

参考文献

1. Acquaviva, C. & Pines, J. The anaphase-promoting complex/cyclosome: APC/C. J Cell Sci 119(Pt 12), 2401–4 (2006).

2. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14(6), 655–65 (2000).

3. Zur, A. & Brandeis, M. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. EMBO J 21(17), 4500–10 (2002).

4. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7(9), 644–56 (2006).

5. Reis, A. et al. The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Rep 7(10), 1040–5 (2006).

6. Wasch, R., Robbins, J. A. & Cross, F. R. The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 29(1), 1–10 (2010).

7. Ramanujan, A. and S. Tiwari, APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep. 36(5), 2016.

8. Thornton, B. R. & Toczyski, D. P. Precise destruction: an emerging picture of the APC. Genes Dev 20(22), 3069–78 (2006).

9. Wurzenberger, C. & Gerlich, D. W. Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12(8), 469–82 (2011).

10. Zachariae, W. et al. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282(5394), 1721–4 (1998).

11. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 9(5), 227–36 (1999).

12. Blanco, M. A. et al. APC(ste9/srw1) promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. EMBO J 19(15), 3945–55 (2000).

13. Robbins, J. A. & Cross, F. R. Requirements and reasons for effective inhibition of the anaphase promoting complex activator CDH1. Mol Biol Cell 21(6), 914–25 (2010).

14. Hockner, S., Neumann-Arnold, L. & Seufert, W. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1. Mol Biol Cell 27(14), 2198–212 (2016).

15. Ondracka, A., Robbins, J. A. & Cross, F. R. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition. PLoS One 11(7), e0159166 (2016).

16. Lukas, C. et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401(6755), 815–8 (1999).

17. Kramer, E. R. et al. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11(5), 1555–69 (2000).

18. Cooper, K. F. et al. Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc Natl Acad Sci USA 97(26), 14548–53 (2000).

19. Okaz, E. et al. Meiotic prophase requires proteolysis of M phase regulators mediated by the meiosis-specific APC/CAma1. Cell 151(3), 603–18 (2012).

20. Holt, J. E. et al. The APC/C activator FZR1 is essential for meiotic prophase I in mice. Development 141(6), 1354–65 (2014).

21. Holt, J. E. et al. The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes. Development 138(5), 905–13 (2011).

22. Reis, A. et al. APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat Cell Biol 8(5), 539–40 (2006).

23. Marangos, P. et al. Prophase I arrest and progression to metaphase I in mouse oocytes are controlled by Emi1-dependent regulation of APC(Cdh1). J Cell Biol 176(1), 65–75 (2007).

24. Rattani, A. et al. APC/C(Cdh1) Enables Removal of Shugoshin-2 from the Arms of Bivalent Chromosomes by Moderating Cyclin- Dependent Kinase Activity. Curr Biol 27(10), 1462–1476 e5 (2017).

25. Reis, A. et al. Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes. Nat Cell Biol 9(10), 1192–8 (2007).

26. Holt, J. E. et al. APC(FZR1) prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing. Mol Biol Cell 23(20), 3970–81 (2012).

27. Homer, H., Gui, L. & Carroll, J. A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science 326(5955), 991–4 (2009).

28. Schindler, K. & Schultz, R. M. CDC14B acts through FZR1 (CDH1) to prevent meiotic maturation of mouse oocytes. Biol Reprod 80(4), 795–803 (2009).

29. Taniwaki, T. et al. Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette. Dev Growth Differ 47(3), 163–72 (2005).

30. Naoe, H. et al. The anaphase-promoting complex/cyclosome activator Cdh1 modulates Rho GTPase by targeting p190 RhoGAP for degradation. Mol Cell Biol 30(16), 3994–4005 (2010).

31. Kim, J. et al. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 517(7535), 466–71 (2015).

32. Parra, M. T. et al. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117(Pt 7), 1221–34 (2004).

33. Seah, M. K. et al. The APC activator fizzy-related-1 (FZR1) is needed for preimplantation mouse embryo development. J Cell Sci 125(Pt 24), 6030–7 (2012).

34. Johmura, Y. et al. Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell 55(1), 73–84 (2014).

35. Li, M. et al. The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nat Cell Biol 10(9), 1083–9 (2008).

36. Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 10(7), 802–11 (2008).

37. Yagi, T. et al. A novel ES cell line, TT2, with high germline-differentiating potency. Anal Biochem 214(1), 70–6 (1993).

38. Araki, K. et al. Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J Biochem 122(5), 977–82 (1997).

39. Ishiguro, K. et al. A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep 12(3), 267–75 (2011).

40. Ishiguro, K. I. et al. MEIOSIN Directs the Switch from Mitosis to Meiosis in Mammalian Germ Cells. Dev Cell 52(4), 429–445 e10 (2020).

41. Ishiguro, K. et al. Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes Dev 28(6), 594–607 (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る