リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Expression and functional maintenance of volume-regulated anion channels in myometrial smooth muscles of pregnant mice.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Expression and functional maintenance of volume-regulated anion channels in myometrial smooth muscles of pregnant mice.

YAMADA Kazutaka 30770234 滋賀医科大学 DOI:10.1538/expanim.21-0111

2022.05.20

概要

Pregnancy causes changes in the uterus, such as increased cell volume and altered water content. However, the mechanisms that protect the structure and maintain the function of uterine smooth muscle cells against these changes during pregnancy have not been clarified. This study focused on the volume-regulated anion channel (VRAC), which opens with cell swelling under low osmotic pressure and releases Cl– ions and various organic osmolytes to resist cell swelling and regulates a wide range of biological processes such as cell death. In this study, myometrial smooth muscle (MSM) tissues and cells (MSMCs) were collected from non-pregnant and pregnant mice. Using western blotting and immunocytochemistry, leucine-rich repeat containing protein 8A (LRRC8A), an essential membrane protein that constitutes part of the VRAC, was determined to be diffused throughout MSMCs including in the cell membrane. Patch-clamp experiments were performed to investigate the electrophysiology of swelling-induced Cl– currents (ICl, swell) mediated by the VRAC. No significant changes between non-pregnancy and pregnancy groups were observed in either the expression density of LRRC8A or the current density of ICl, swell, however the presence of LRRC8A on the cell membrane was significantly increased in the third trimester of pregnancy compared to the non-pregnancy. This study suggests that the VRAC may play a role, such as maintaining cellular homeostasis in the pregnant MSM.

参考文献

1. Casteels R, Kuriyama H. Membrane potential and ionic content in pregnant and non-pregnant rat myometrium. J Physiol.

1965; 177: 263–287. [Medline] [CrossRef]

2. Osa T, Fujino T. Electrophysiological comparison between the

longitudinal and circular muscles of the rat uterus during the

estrous cycle and pregnancy. Jpn J Physiol. 1978; 28: 197–

209. [Medline] [CrossRef]

3. Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and

term parturition. J Reprod Immunol. 2008; 79: 50–57. [Medline] [CrossRef]

4. Leonhardt A, Glaser A, Wegmann M, Hackenberg R, Nüsing

RM. Expression of prostanoid receptors in human lower segment pregnant myometrium. Prostaglandins Leukot Essent

Fatty Acids. 2003; 69: 307–313. [Medline] [CrossRef]

5. Chien EK, Macgregor C. Expression and regulation of the rat

prostaglandin E2 receptor type 4 (EP4) in pregnant cervical

tissue. Am J Obstet Gynecol. 2003; 189: 1501–1510. [Medline] [CrossRef]

6. Fukuda Y, Sugimura M, Suzuki K, Kanayama N. Prostaglandin E2 receptor EP4-selective antagonist inhibits lipopolysaccharide-induced cervical ripening in rabbits. Acta Obstet

Gynecol Scand. 2007; 86: 1297–1302. [Medline] [CrossRef]

7. Ichikawa A, Sugimoto Y, Negishi M. Molecular aspects of the

structures and functions of the prostaglandin E receptors. J

Lipid Mediat Cell Signal. 1996; 14: 83–87. [Medline] [CrossRef]

8. Breuiller-Fouche M, Germain G. Gene and protein expression

in the myometrium in pregnancy and labor. Reproduction.

2006; 131: 837–850. [Medline] [CrossRef]

9. Chan EC, Fraser S, Yin S, Yeo G, Kwek K, Fairclough RJ, et

al. Human myometrial genes are differentially expressed in labor: a suppression subtractive hybridization study. J Clin Endocrinol Metab. 2002; 87: 2435–2441. [Medline] [CrossRef]

10. Jentsch TJ. VRACs and other ion channels and transporters in

the regulation of cell volume and beyond. Nat Rev Mol Cell

Biol. 2016; 17: 293–307. [Medline] [CrossRef]

11. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell

volume regulation in vertebrates. Physiol Rev. 2009; 89: 193–

277. [Medline] [CrossRef]

12. Voss FK, Ullrich F, Münch J, Lazarow K, Lutter D, Mah N, et

al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science.

2014; 344: 634–638. [Medline] [CrossRef]

13. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, et

al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014; 157:

447–458. [Medline] [CrossRef]

14. Okada Y, Sato K, Numata T. Pathophysiology and puzzles of

the volume-sensitive outwardly rectifying anion channel. J

Physiol. 2009; 587: 2141–2149. [Medline]

15. Lang F, Hoffmann EK. Role of ion transport in control of

apoptotic cell death. Compr Physiol. 2012; 2: 2037–2061.

[Medline] [CrossRef]

16. Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi

N. Volume-sensitive chloride channels involved in apoptotic

volume decrease and cell death. J Membr Biol. 2006; 209:

21–29. [Medline] [CrossRef]

17. Jaeger M, Carin M, Medale M, Tryggvason G. The osmotic

migration of cells in a solute gradient. Biophys J. 1999; 77:

1257–1267. [Medline] [CrossRef]

18. Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC

130

| doi: 10.1538/expanim.21-0111

anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun. 2018; 9: 1974. [Medline] [CrossRef]

19. Pedersen SF, Hoffmann EK, Novak I. Cell volume regulation

in epithelial physiology and cancer. Front Physiol. 2013; 4:

233. [Medline] [CrossRef]

20. Decher N, Lang HJ, Nilius B, Brüggemann A, Busch AE,

Steinmeyer K. DCPIB is a novel selective blocker of I(Cl,swell)

and prevents swelling-induced shortening of guinea-pig atrial

action potential duration. Br J Pharmacol. 2001; 134: 1467–

1479. [Medline] [CrossRef]

21. Friard J, Tauc M, Cougnon M, Compan V, Duranton C, Rubera I. Comparative effects of chloride channel inhibitors on

LRRC8/VRAC-mediated chloride conductance. Front Pharmacol. 2017; 8: 328. [Medline] [CrossRef]

22. Liu Y, Oiki S, Tsumura T, Shimizu T, Okada Y. Glibenclamide

blocks volume-sensitive Cl- channels by dual mechanisms.

Am J Physiol. 1998; 275: C343–C351. [Medline] [CrossRef]

23. Sakaguchi M, Matsuura H, Ehara T. Swelling-induced Clcurrent in guinea-pig atrial myocytes: inhibition by glibenclamide. J Physiol. 1997; 505: 41–52. [Medline] [CrossRef]

24. Greenwood IA, Yeung SY, Tribe RM, Ohya S. Loss of functional K+ channels encoded by ether-à-go-go-related genes

in mouse myometrium prior to labour onset. J Physiol. 2009;

587: 2313–2326. [Medline] [CrossRef]

25. Matsuki K, Takemoto M, Suzuki Y, Yamamura H, Ohya S,

Takeshima H, et al. Ryanodine receptor type 3 does not contribute to contractions in the mouse myometrium regardless

of pregnancy. Pflugers Arch. 2017; 469: 313–326. [Medline]

[CrossRef]

26. Ding WG, Xie Y, Toyoda F, Matsuura H. Improved functional

expression of human cardiac kv1.5 channels and traffickingdefective mutants by low temperature treatment. PLoS One.

2014; 9: e92923. [Medline] [CrossRef]

27. Zhang J, Lieberman M. Chloride conductance is activated by

membrane distention of cultured chick heart cells. Cardiovasc

Res. 1996; 32: 168–179. [Medline] [CrossRef]

28. Serra SA, Stojakovic P, Amat R, Rubio-Moscardo F, Latorre

P, Seisenbacher G, et al. LRRC8A-containing chloride channel is crucial for cell volume recovery and survival under

hypertonic conditions. Proc Natl Acad Sci USA. 2021; 118:

e2025013118. [Medline] [CrossRef]

29. Syeda R, Qiu Z, Dubin AE, Murthy SE, Florendo MN, Mason DE, et al. LRRC8 proteins form volume-regulated anion

channels that sense ionic strength. Cell. 2016; 164: 499–511.

[Medline] [CrossRef]

30. Emma F, McManus M, Strange K. Intracellular electrolytes

regulate the volume set point of the organic osmolyte/anion

channel VSOAC. Am J Physiol. 1997; 272: C1766–C1775.

[Medline] [CrossRef]

31. Jackson PS, Churchwell K, Ballatori N, Boyer JL, Strange K.

Swelling-activated anion conductance in skate hepatocytes:

regulation by cell Cl- and ATP. Am J Physiol. 1996; 270: C57–

C66. [Medline] [CrossRef]

32. König B, Stauber T. Biophysics and structure-function relationships of LRRC8-formed volume-regulated anion channels. Biophys J. 2019; 116: 1185–1193. [Medline] [CrossRef]

33. Jentsch TJ, Lutter D, Planells-Cases R, Ullrich F, Voss FK.

VRAC: molecular identification as LRRC8 heteromers with

differential functions. Pflugers Arch. 2016; 468: 385–393.

[Medline] [CrossRef]

34. Bao J, Perez CJ, Kim J, Zhang H, Murphy CJ, Hamidi T, et al.

Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight. 2018; 3: e99767385–e99767393. [Medline] [CrossRef]

35. Kumar L, Chou J, Yee CS, Borzutzky A, Vollmann EH, von

Andrian UH, et al. Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J Exp Med. 2014; 211: 929–942. [Medline] [CrossRef]

...

参考文献をもっと見る