リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Construction of Fosmid-based SARS-CoV-2 replicons for antiviral drug screening and replication analyses in biosafety level 2 facilities」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Construction of Fosmid-based SARS-CoV-2 replicons for antiviral drug screening and replication analyses in biosafety level 2 facilities

Takazawa, Shunta Kotaki, Tomohiro Nakamura, Satsuki Utsubo, Chie Kameoka, Masanori 神戸大学

2023.09

概要

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has necessitated the global development of countermeasures since its outbreak. However, current therapeutics and vaccines to stop the pandemic are insufficient and this is mainly because of the emergence of resistant variants, which requires the urgent development of new countermeasures, such as antiviral drugs. Replicons, self-replicating RNAs that do not produce virions, are a promising system for this purpose because they safely recreate viral replication, enabling antiviral screening in biosafety level (BSL)-2 facilities. We herein constructed three pCC2Fos-based RNA replicons lacking some open reading frames (ORF) of SARS-CoV-2: the Δorf2–8, Δorf2.4, and Δorf2 replicons, and validated their replication in Huh-7 cells. The functionalities of the Δorf2–8 and Δorf2.4 replicons for antiviral drug screening were also confirmed. We conducted puromycin selection following the construction of the Δorf2.4-puro replicon by inserting a puromycin-resistant gene into the Δorf2.4 replicon. We observed the more sustained replication of the Δorf2.4-puro replicon by puromycin pressure. The present results will contribute to the establishment of a safe and useful replicon system for analyzing SARS-CoV-2 replication mechanisms as well as the development of novel antiviral drugs in BSL-2 facilities.

この論文で使われている画像

参考文献

Atluri, K., Aimlin, I., Arora, S., 2022. Current effective therapeutics in management of

COVID-19. J. Clin. Med. 11 (13), 3838.

S. Takazawa et al.

Virus Research 334 (2023) 199176

Kung, Y.A., Lee, K.M., Chiang, H.J., Huang, S.Y., Wu, C.J., Shih, S.R., 2022. Molecular

virology of SARS-CoV-2 and related coronaviruses. Microbiol. Mol. Biol. Rev. 86 (2),

e0002621.

Lee, J.H., Koepke, L., Kirchhoff, F., Sparrer, K.M.J., 2022. Interferon antagonists encoded

by SARS-CoV-2 at a glance. Med. Microbiol. Immunol. 1–7.

Lei, X., Dong, X., Ma, R., Wang, W., Xiao, X., Tian, Z., Wang, C., Wang, Y., Li, L., Ren, L.,

Guo, F., Zhao, Z., Zhou, Z., Xiang, Z., Wang, J., 2020. Activation and evasion of type

I interferon responses by SARS-CoV-2. Nat. Commun. 11 (1), 3810.

Liu, S., Chou, C.K., Wu, W.W., Luan, B., Wang, T.T., 2022. Stable cell clones harboring

self-replicating SARS-CoV-2 RNAs for drug screen. J. Virol. 96 (6), e0221621.

Malicoat, J., Manivasagam, S., Zuniga, S., Sola, I., McCabe, D., Rong, L., Perlman, S.,

Enjuanes, L., Manicassamy, B., 2022. Development of a single-cycle infectious SARSCoV-2 virus replicon particle system for use in biosafety level 2 laboratories. J. Virol.

96 (3), e0183721.

Nguyen, H.T., Falzarano, D., Gerdts, V., Liu, Q., 2021. Construction of a noninfectious

SARS-CoV-2 replicon for antiviral-drug testing and gene function studies. J. Virol. 95

(18), e0068721.

Ramirez, S., Fernandez-Antunez, C., Galli, A., Underwood, A., Pham, L.V., Ryberg, L.A.,

Feng, S., Pedersen, M.S., Mikkelsen, L.S., Belouzard, S., Dubuisson, J., Solund, C.,

Weis, N., Gottwein, J.M., Fahnoe, U., Bukh, J., 2021. Overcoming culture restriction

for SARS-CoV-2 in human cells facilitates the screening of compounds inhibiting

viral replication. Antimicrob. Agents Chemother. 65 (7), e0009721.

Ren, Y., Shu, T., Wu, D., Mu, J., Wang, C., Huang, M., Han, Y., Zhang, X.Y., Zhou, W.,

Qiu, Y., Zhou, X., 2020. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells.

Cell Mol. Immunol. 17 (8), 881–883.

Silvas, J.A., Vasquez, D.M., Park, J.G., Chiem, K., Allue-Guardia, A., Garcia-Vilanova, A.,

Platt, R.N., Miorin, L., Kehrer, T., Cupic, A., Gonzalez-Reiche, A.S., Bakel, H.V.,

Garcia-Sastre, A., Anderson, T., Torrelles, J.B., Ye, C., Martinez-Sobrido, L., 2021.

Contribution of SARS-CoV-2 accessory proteins to viral pathogenicity in K18 human

ACE2 transgenic mice. J. Virol. 95 (17), e0040221.

Takashita, E., Kinoshita, N., Yamayoshi, S., Sakai-Tagawa, Y., Fujisaki, S., Ito, M.,

Iwatsuki-Horimoto, K., Chiba, S., Halfmann, P., Nagai, H., Saito, M., Adachi, E.,

Sullivan, D., Pekosz, A., Watanabe, S., Maeda, K., Imai, M., Yotsuyanagi, H.,

Mitsuya, H., Ohmagari, N., Takeda, M., Hasegawa, H., Kawaoka, Y., 2022. Efficacy

of antibodies and antiviral drugs against Covid-19 Omicron variant. N. Engl. J. Med.

386 (10), 995–998.

Tanaka, T., Saito, A., Suzuki, T., Miyamoto, Y., Takayama, K., Okamoto, T., Moriishi, K.,

2022. Establishment of a stable SARS-CoV-2 replicon system for application in highthroughput screening. Antivir. Res. 199, 105268.

Tews, B.A., Meyers, G., 2017. Self-replicating RNA. Methods Mol. Biol. 1499, 15–35.

The Center for Systems Science and Engineering (CSSE) at Johns Hopkins University

(JHU), 2023. COVID-19 Dashboard. https://coronavirus.jhu.edu/map.html

(Accessed 20 January 2023).

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., Xiao, G.,

2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel

coronavirus (2019-nCoV) in vitro. Cell Res. 30 (3), 269–271.

Xia, H., Cao, Z., Xie, X., Zhang, X., Chen, J.Y., Wang, H., Menachery, V.D., Rajsbaum, R.,

Shi, P.Y., 2020. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33 (1),

108234.

Zhang, Q.Y., Deng, C.L., Liu, J., Li, J.Q., Zhang, H.Q., Li, N., Zhang, Y.N., Li, X.D.,

Zhang, B., Xu, Y., Ye, H.Q., 2021a. SARS-CoV-2 replicon for high-throughput

antiviral screening. J. Gen. Virol. 102 (5), 001583.

Zhang, Y., Song, W., Chen, S., Yuan, Z., Yi, Z., 2021b. A bacterial artificial chromosome

(BAC)-vectored noninfectious replicon of SARS-CoV-2. Antivir. Res. 185, 104974.

Beigel, J.H., Tomashek, K.M., Dodd, L.E., Mehta, A.K., Zingman, B.S., Kalil, A.C.,

Hohmann, E., Chu, H.Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R.

W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T.F., Paredes, R., Sweeney, D.A.,

Short, W.R., Touloumi, G., Lye, D.C., Ohmagari, N., Oh, M.D., Ruiz-Palacios, G.M.,

Benfield, T., Fatkenheuer, G., Kortepeter, M.G., Atmar, R.L., Creech, C.B.,

Lundgren, J., Babiker, A.G., Pett, S., Neaton, J.D., Burgess, T.H., Bonnett, T.,

Green, M., Makowski, M., Osinusi, A., Nayak, S., Lane, H.C., Members, A.-S.G., 2020.

Remdesivir for the treatment of Covid-19 - final report. N. Engl. J. Med. 383 (19),

1813–1826.

Centers for Disease Control and Prevention (CDC), 2022. Overview of COVID-19 vaccines

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/overv

iew-COVID-19-vaccines.html (accessed 20 January 2023).

Centers for Disease Control and Prevention (CDC), 2021. Interim laboratory biosafety

guidelines for handling and processing specimens associated with coronavirus

disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/lab/la

b-biosafety-guidelines.html (accessed 30 June 2023).

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y.,

Xia, J., Yu, T., Zhang, X., Zhang, L., 2020. Epidemiological and clinical

characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a

descriptive study. Lancet 395 (10223), 507–513.

Cheung, P.H., Ye, Z.W., Lui, W.Y., Ong, C.P., Chan, P., Lee, T.T., Tang, T.T., Yuen, T.L.,

Fung, S.Y., Cheng, Y., Chan, C.P., Chan, C.P., Jin, D.Y., 2022. Production of singlecycle infectious SARS-CoV-2 through a trans-complemented replicon. J. Med. Virol.

94 (12), 6078–6090.

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z.,

Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T.,

Zhang, B., Yang, X., Li, J., Yang, H., Liu, Z., Xu, W., Guddat, L.W., Wang, Q., Lou, Z.,

Rao, Z., 2020. Structure of the RNA-dependent RNA polymerase from COVID-19

virus. Science 368 (6492), 779–782.

He, X., Quan, S., Xu, M., Rodriguez, S., Goh, S.L., Wei, J., Fridman, A., Koeplinger, K.A.,

Carroll, S.S., Grobler, J.A., Espeseth, A.S., Olsen, D.B., Hazuda, D.J., Wang, D., 2021.

Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening

and testing. Proc. Natl. Acad. Sci. U.S.A. 118 (15), e2025866118.

Heilmann, E., Costacurta, F., Moghadasi, S.A., Ye, C., Pavan, M., Bassani, D., Volland, A.,

Ascher, C., Weiss, A.K.H., Bante, D., Harris, R.S., Moro, S., Rupp, B., MartinezSobrido, L., von Laer, D., 2023. SARS-CoV-2 3CL(pro) mutations selected in a VSVbased system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci. Transl.

Med. 15 (678), eabq7360.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X.,

Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y.,

Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., Cao, B., 2020.

Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.

Lancet 395 (10223), 497–506.

Jin, Y.Y., Lin, H., Cao, L., Wu, W.C., Ji, Y., Du, L., Jiang, Y., Xie, Y., Tong, K., Xing, F.,

Zheng, F., Shi, M., Pan, J.A., Peng, X., Guo, D., 2021. A convenient and biosafe

replicon with accessory genes of SARS-CoV-2 and its potential application in

antiviral drug discovery. Virol. Sin. 36 (5), 913–923.

Kotaki, T., Xie, X., Shi, P.Y., Kameoka, M., 2021. A PCR amplicon-based SARS-CoV-2

replicon for antiviral evaluation. Sci. Rep. 11 (1), 2229.

Kuhlmann, C., Mayer, C.K., Claassen, M., Maponga, T., Burgers, W.A., Keeton, R.,

Riou, C., Sutherland, A.D., Suliman, T., Shaw, M.L., Preiser, W., 2022. Breakthrough

infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet

399 (10325), 625–626.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る