リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Belly roll: an Ly6 protein regulating nociceptive escape behaviors by modulating peptidergic interneuron excitability in Drosophila melanogaster」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Belly roll: an Ly6 protein regulating nociceptive escape behaviors by modulating peptidergic interneuron excitability in Drosophila melanogaster

Li, Kai 京都大学 DOI:10.14989/doctor.k24943

2023.09.25

概要

1-1. Drosophila larval escape behavior
Appropriate response to threatening stimuli is of utmost importance for the survival of organisms
(Branco and Redgrave, 2020; Burrell, 2017; Chin and Tracey, 2017; Im and Galko, 2012; Peirs
and Seal, 2016). Nociception, a fundamental sensory mechanism that allows animals to perceive
and avoid potentially harmful stimuli, plays a critical role in this process. Nociception involves
the activation of specialized neurons called nociceptors, which are responsible for detecting
different forms of potentially damaging stimuli in the environment, including heat, mechanical
pressure, and chemical irritants. Notably, in response to harmful stimuli like aggressive
mechanical stimulation caused by parasitoid wasp attacks, Drosophila melanogaster larvae
exhibit standard escape responses characterized by an instantaneous and abrupt bending motion
followed by a subsequent rolling motion in a spiraling pattern (Hwang et al., 2007; Onodera et
al., 2017; Tracey et al., 2003). Class IV dendritic arborization neurons (Class IV neurons),
located beneath the body wall, have been identified as the nociceptors involved in this process
(Tracey et al., 2003). Class IV neurons serve as polymodal nociceptors, capable of responding to
diverse classes of noxious stimuli characterized by distinct physical properties. These stimuli
include mechanical stimuli, noxious high temperature, as well as UV or blue light (Hwang et al.,
2007; Im and Galko, 2012; Xiang et al., 2010). Through a series of investigations, researchers
have successfully identified the relevant receptors present in Class IV neurons. Specifically,
Drosophila TRPA1 and Painless receptors have been implicated in mediating thermal
nociception (Hwang et al., 2012; Tracey et al., 2003; Zhong et al., 2012) while Gr28b receptor is
involved in sensing short-wavelength light stimuli (Xiang et al., 2010). ...

参考文献

Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S,

von Heijne G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions

using deep neural networks. Nat Biotechnol 37:420–423. doi:10.1038/s41587-0190036-z

Bergland AO, Behrman EL, O’Brien KR, Schmidt PS, Petrov DA. 2014. Genomic

Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in

Drosophila. PLoS Genet 10. doi:10.1371/journal.pgen.1004775

Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner

TG. 2011. High-efficiency channelrhodopsins for fast neuronal stimulation at low

light levels. Proc Natl Acad Sci U S A 108:7595–7600.

doi:10.1073/pnas.1017210108

Bohm RA, Welch WP, Goodnight LK, Cox LW, Henry LG, Gunter TC, Bao H, Zhang B.

2010. A genetic mosaic approach for neural circuit mapping in Drosophila. Proc

Natl Acad Sci U S A 107:16378–16383. doi:10.1073/pnas.1004669107

Bourbia N, Ansah OB, Pertovaara A. 2010. Corticotropin-releasing factor in the rat

amygdala differentially influences sensory-discriminative and emotional-like pain

response in peripheral neuropathy. J Pain 11:1461–1471.

doi:10.1016/j.jpain.2010.05.004

Branco T, Redgrave P. 2020. The Neural Basis of Escape Behavior in Vertebrates.

Annu Rev Neurosci 43:417–439. doi:10.1146/annurev-neuro-100219-122527

Budde T, Meuth S, Pape HC. 2002. Calcium-dependent inactivation of neuronal calcium

channels. Nat Rev Neurosci 3:873–883. doi:10.1038/nrn959

Burgos A, Honjo K, Ohyama T, Qian CS, Shin GJ, Gohl DM, Silies M, Tracey WD, Zlatic

M, Cardona A, Grueber WB. 2018. Nociceptive interneurons control modular motor

pathways to promote escape behavior in Drosophila. Elife 7:e26016.

doi:10.7554/eLife.26016

Burnett CJ, Li C, Webber E, Tsaousidou E, Xue SY, Brüning JC, Krashes MJ. 2016.

Hunger-Driven Motivational State Competition. Neuron 92:187–201.

doi:10.1016/j.neuron.2016.08.032

Burrell BD. 2017. Comparative biology of pain: What invertebrates can tell us about how

nociception works. J Neurophysiol 117:1461–1473. doi:10.1152/jn.00600.2016

Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Berhanu Lemma R, Turchi

L, Blanc-Mathieu R, Lucas J, Boddie P, Khan A, Perez NM, Fornes O, Leung TY,

89

Aguirre A, Hammal F, Schmelter D, Baranasic D, Ballester B, Sandelin A, Lenhard

B, Vandepoele K, Wasserman WW, Parcy F, Mathelier A. 2022. JASPAR 2022:

The 9th release of the open-access database of transcription factor binding profiles.

Nucleic Acids Res 50:D165–D173. doi:10.1093/nar/gkab1113

Chin MR, Tracey WD. 2017. Nociceptive Circuits: Can’t Escape Detection. Curr Biol

27:R796–R798. doi:10.1016/j.cub.2017.07.031

Choo YM, Lee BH, Lee KS, Kim BY, Li J, Kim JG, Lee JH, Sohn HD, Nah SY, Jin BR.

2008. Pr-lynx1, a modulator of nicotinic acetylcholine receptors in the insect. Mol

Cell Neurosci 38:224–235. doi:10.1016/j.mcn.2008.02.011

Corrales M, Cocanougher BT, Kohn AB, Wittenbach JD, Long XS, Lemire A, Cardona

A, Singer RH, Moroz LL, Zlatic M. 2022. A single - cell transcriptomic atlas of

complete insect nervous systems across multiple life stages. Neural Development

17 1–23. doi:10.1186/s13064-022-00164-6

Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT,

Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER,

Jayaraman V, Looger LL, Svoboda K, Kim DS. 2016. Sensitive red protein calcium

indicators for imaging neural activity. Elife 5:1–24. doi:10.7554/eLife.12727

Dason JS, Cheung A, Anreiter I, Montemurri VA, Allen AM, Sokolowski MB. 2019.

Drosophila foraging regulates a nociceptive-like escape behavior through a

developmentally plastic sensory circuit. Proc Natl Acad Sci 117:23286–23291.

doi:10.1073/pnas.1820840116

De Haro M, Al-Ramahi I, Benito-Sipos J, López-Arias B, Dorado B, Veenstra JA,

Herrero P. 2010. Detailed analysis of leucokinin-expressing neurons and their

candidate functions in the Drosophila nervous system. Cell Tissue Res 339:321–

336. doi:10.1007/s00441-009-0890-y

Eisenhaber B, Bork P, Eisenhaber F. 1999. Prediction of potential GPI-modification

sites in proprotein sequences. J Mol Biol 292:741–758. doi:10.1006/jmbi.1999.3069

Fadok JP, Krabbe S, Markovic M, Courtin J, Xu C, Massi L, Botta P, Bylund K, Müller C,

Kovacevic A, Tovote P, Lüthi A. 2017. A competitive inhibitory circuit for selection

of active and passive fear responses. Nature 542:96–99. doi:10.1038/nature21047

Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. 2022. The emergence and

influence of internal states. Neuron 110:2545-2570.

doi:10.1016/j.neuron.2022.04.030

Fleury F, Ris N, Allemand R, Fouillet P, Carton Y, Boulétreau M. 2004. Ecological and

genetic interactions in Drosophila-parasitoids communities: A case study with D.

melanogaster, D. simulans and their common Leptopilina parasitoids in southeastern France. Genetica 120:181–194.

doi:10.1023/B:GENE.0000017640.78087.9e

90

Gupta R, Brunak S. 2001. Prediction of glycosylation across the human proteome and

the correlation to protein functionPacific Symposium on Biocomputing 2002. pp.

310–322.

Hijazi A, Masson W, Augé B, Waltzer L, Haenlin M, Roch F. 2009. Boudin is required for

septate junction organisation in Drosophila and codes for a diffusible protein of the

Ly6 superfamily. Development 136:2199–2209. doi:10.1242/dev.033845

Hu C, Petersen M, Hoyer N, Spitzweck B, Tenedini F, Wang D, Gruschka A, Burchardt

LS, Szpotowicz E, Schweizer M, Guntur AR, Yang C, Soba P. 2017. Sensory

integration and neuromodulatory feedback facilitate Drosophila

mechanonociceptive behavior. Nat Neurosci 20:1085–1095. doi:10.1038/nn.4580

Hu Y, Wang C, Yang L, Pan G, Liu H, Yu G, Ye B. 2020. A Neural Basis for

Categorizing Sensory Stimuli to Enhance Decision Accuracy. Curr Biol 30:4896–

4909. doi:10.1016/j.cub.2020.09.045

Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, Tarone AM, Turlapati L, Zichner

T, Zhu D, Lyman RF, Magwire MM, Blankenburg K, Carbone MA, Chang K, Ellis

LL, Fernandez S, Han Y, Highnam G, Hjelmen CE, Jack JR, Javaid M, Jayaseelan

J, Kalra D, Lee S, Lewis L, Munidasa M, Ongeri F, Patel S, Perales L, Perez A, Pu

LL, Rollmann SM, Ruth R, Saada N, Warner C, Williams A, Wu YQ, Yamamoto A,

Zhang Y, Zhu Y, Anholt RRH, Korbel JO, Mittelman D, Muzny DM, Gibbs RA,

Barbadilla A, Johnston JS, Stone EA, Richards S, Deplancke B, Mackay TFC.

2014. Natural variation in genome architecture among 205 Drosophila

melanogaster Genetic Reference Panel lines. Genome Res 24:1193–1208.

doi:10.1101/gr.171546.113

Hwang RY, Stearns NA, Tracey WD. 2012. The ankyrin repeat domain of the trpa

protein painless is important for thermal nociception but not mechanical

nociception. PLoS One 7. doi:10.1371/journal.pone.0030090

Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Carolina N. 2007.

Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps Curr Biol

17:2105–2116. doi:10.1016/j.cub.2007.11.029

Im SH, Galko MJ. 2012. Pokes, sunburn, and hot sauce: Drosophila as an emerging

model for the biology of nociception. Dev Dyn 241:16–26. doi:10.1002/dvdy.22737

Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K,

Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang CH,

Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P. 2022. A

neuropeptidergic circuit gates selective escape behavior of Drosophila larvae. Curr

Biol 32:149-163.e8. doi:10.1016/j.cub.2021.10.069

Itoga CA, Roltsch Hellard EA, Whitaker AM, Lu YL, Schreiber AL, Baynes BB,

Baiamonte BA, Richardson HN, Gilpin NW. 2016. Traumatic Stress Promotes

Hyperalgesia via Corticotropin-Releasing Factor-1 Receptor (CRFR1) Signaling in

91

Central Amygdala. Neuropsychopharmacology 41:2463–2472.

doi:10.1038/npp.2016.44

Jennings EM, Okine BN, Roche M, Finn DP. 2014. Stress-induced hyperalgesia. Prog

Neurobiol 121:1–18. doi:10.1016/j.pneurobio.2014.06.003

Ji G, Fu Y, Adwanikar H, Neugebauer V. 2013. Non-pain-related CRF1 activation in the

amygdala facilitates synaptic transmission and pain responses. Mol Pain 9:11–15.

doi:10.1186/1744-8069-9-2

Johnson AC, Tran L, Greenwood-Van Meerveld B. 2015. Knockdown of corticotropinreleasing factor in the central amygdala reverses persistent viscerosomatic

hyperalgesia. Transl Psychiatry 5:e517. doi:10.1038/tp.2015.16

Jovanic T, Schneider-Mizell CM, Shao M, Masson JB, Denisov G, Fetter RD, Mensh

BD, Truman JW, Cardona A, Zlatic M. 2016. Competitive Disinhibition Mediates

Behavioral Choice and Sequences in Drosophila. Cell 167:858-870.e19.

doi:10.1016/j.cell.2016.09.009

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool

K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ,

Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S,

Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T,

Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis

D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature

596:583–589. doi:10.1038/s41586-021-03819-2

Kaneko T, Macara AM, Li R, Yang C, Kaneko T, Macara AM, Li R, Hu Y, Iwasaki K,

Dunnings Z, Firestone E. 2017. Serotonergic Modulation Enables Pathway-Specific

Plasticity in a Developing Sensory Circuit in Drosophila. Neuron 95:623–638.e4.

doi:10.1016/j.neuron.2017.06.034

Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK. 2017. The Drosophila Duox

maturation factor is a key component of a positive feedback loop that sustains

regeneration signaling. PLoS Genetics 13:e1006937.

doi:10.1371/journal.pgen.1006937

Kim YJ, Žitňan D, Galizia CG, Cho KH, Adams ME. 2006. A Command Chemical

Triggers an Innate Behavior by Sequential Activation of Multiple Peptidergic

Ensembles. Curr Biol 16:1395–1407. doi:10.1016/j.cub.2006.06.027

Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK,

Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY,

Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden

ES. 2014. Independent optical excitation of distinct neural populations. Nat

Methods 11:338–346. doi:10.1038/nmeth.2836

Kondo S, Ueda R. 2013. Highly Improved gene targeting by germline-specific Cas9

92

expression in Drosophila. Genetics 195:715–721. doi:10.1534/genetics.113.156737

Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane

protein topology with a hidden Markov model: Application to complete genomes. J

Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315

Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. 2011. FaST linear

mixed models for genome-wide association studies. Nat Methods 8:833–835.

doi:10.1038/nmeth.1681

Liu Y, Luo J, Carlsson MA, Nässel DR. 2015. Serotonin and insulin-like peptides

modulate leucokinin-producing neurons that affect feeding and water homeostasis

in Drosophila. J Comp Neurol 523:1840–1863. doi:10.1002/cne.23768

Liu Z, Cao G, Li J, Bao H, Zhang Y. 2009. Identification of two Lynx proteins in

Nilaparvata lugens and the modulation on insect nicotinic acetylcholine receptors. J

Neurochem 110:1707–1714. doi:10.1111/j.1471-4159.2009.06274.x

Long AD, Macdonald SJ, King EG. 2014. Dissecting complex traits using the Drosophila

Synthetic Population Resource. Trends Genet 30:488–495.

doi:10.1016/j.tig.2014.07.009

Loughner CL, Bruford EA, McAndrews MS, Delp EE, Swamynathan S, Swamynathan

SK. 2016. Organization, evolution and functions of the human and mouse

Ly6/uPAR family genes. Hum Genomics 10:10. doi:10.1186/s40246-016-0074-2

Lowe N, Rees JS, Roote J, Ryder E, Armean IM, Johnson G, Drummond E, Spriggs H,

Drummond J, Magbanua JP, Naylor H, Sanson B, Bastock R, Huelsmann S,

Trovisco V, Landgraf M, Knowles-Barley S, Douglas Armstrong J, White-Cooper H,

Hansen C, Phillips RG, Azevedo R, Bailey AP, Battisti V, Belaya K, Bergstralh D,

Bloor JW, Booth H, Brand AH, Bray S, Brown NH, Brown S, Chang C wen, Chell J,

Coiffic A, Cols M, Cranston M, Davidson CM, Davis I, Dods JS, Doerflinger H, Edoff

K, Egger B, Faria C, Gold KS, Gould AP, Gregory LM, Gubb D, Flower R, Hall J,

Huen D, Inoue Y, Jarman A, Kyriacou C, Le Droguen PM, Lenoir O, Lye C, Ma L,

Gutierrez Mazariegos J, McNeilly L, Maitra S, Mirouse V, Morais de Sa E,

Nashchekin D, Nieuwburg R, Okkenhaug H, Pezeron G, Raghu P, Roberts I,

Rosato E, Sehadova´ H, Southall TD, Speder P, Stanewsky R, Szabo G, Szular J,

Tear G, Thompson ARC, Valles AM, Vega-Rioja A, Welchman DP, Wheatley L,

White RH, Zwart M, Lilley KS, Russell S, Johnston DS. 2014. Analysis of the

expression patterns, Subcellular localisations and interaction partners of drosophila

proteins using a pigp protein trap library. Development 141:3994–4005.

doi:10.1242/dev.111054

Luo J, Liu Y, Nässel DR. 2013. Insulin/IGF-Regulated Size Scaling of Neuroendocrine

Cells Expressing the bHLH Transcription Factor Dimmed in Drosophila. PLoS

Genet 9. doi:10.1371/journal.pgen.1004052

Mackay TFC, Huang W. 2018. Charting the genotype–phenotype map: lessons from the

93

Drosophila melanogaster Genetic Reference Panel. Wiley Interdiscip Rev Dev Biol

7:1–18. doi:10.1002/wdev.289

MacKay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han

Y, Magwire MM, Cridland JM, Richardson MF, Anholt RRH, Barrón M, Bess C,

Blankenburg KP, Carbone MA, Castellano D, Chaboub L, Duncan L, Harris Z,

Javaid M, Jayaseelan JC, Jhangiani SN, Jordan KW, Lara F, Lawrence F, Lee SL,

Librado P, Linheiro RS, Lyman RF, MacKey AJ, Munidasa M, Muzny DM, Nazareth

L, Newsham I, Perales L, Pu LL, Qu C, Ràmia M, Reid JG, Rollmann SM, Rozas J,

Saada N, Turlapati L, Worley KC, Wu YQ, Yamamoto A, Zhu Y, Bergman CM,

Thornton KR, Mittelman D, Gibbs RA. 2012. The Drosophila melanogaster Genetic

Reference Panel. Nature 482:173–178. doi:10.1038/nature10811

Mohammad F, Stewart JC, Ott S, Chlebikova K, Chua JY, Koh T-W, Ho J, ClaridgeChang A. 2017. Optogenetic inhibition of behavior with anion channelrhodopsins.

Nat Methods 14:271–274. doi:10.1038/nmeth.4148

Mu Y, Li X quan, Zhang B, Du J lin. 2012. Visual Input Modulates Audiomotor Function

via Hypothalamic Dopaminergic Neurons through a Cooperative Mechanism.

Neuron 75:688–699. doi:10.1016/j.neuron.2012.05.035

Nässel DR, Winther ÅME. 2010. Drosophila neuropeptides in regulation of physiology

and behavior. Prog Neurobiol 92:42–104. doi:10.1016/j.pneurobio.2010.04.010

Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, Villalta C, Booker M, Perkins L,

Perrimon N. 2008. Vector and parameters for targeted transgenic RNA interference

in Drosophila melanogaster. Nat Methods 5:49–51. doi:10.1038/nmeth1146

Oh Y, Lai JSY, Min S, Huang HW, Liberles SD, Ryoo HD, Suh GSB. 2021. Periphery

signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated

glucose load regulate the Drosophila brain nutrient sensor. Neuron 109:19791995.e6. doi:10.1016/j.neuron.2021.04.028

Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M,

Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M. 2015. A

multilevel multimodal circuit enhances action selection in Drosophila. Nature

520:633–9. doi:10.1038/nature14297

Okusawa S, Kohsaka H, Nose A. 2014. Serotonin and Downstream Leucokinin Neurons

Modulate Larval Turning Behavior in Drosophila. J Neurosci. 34:2544–2558

doi:10.1523/JNEUROSCI.3500-13.2014

Onodera K, Baba S, Murakami A, Uemura T, Usui T. 2017. Small conductance Ca2+activated K+ channels induce the firing pause periods during the activation of

drosophila nociceptive neurons. Elife 6:1–17. doi:10.7554/eLife.29754.001

Peirs C, Seal RP. 2016. Neural circuits for pain: Recent advances and current views.

Science 354:578–584. doi:10.1126/science.aaf8933

94

Risse B, Berh D, Otto N, Klämbt C, Jiang X. 2017. FIMTrack: An open source tracking

and locomotion analysis software for small animals. PLoS Comput Biol 13:1–15.

doi:10.1371/journal.pcbi.1005530

Simpson JH. 2016. Rationally subdividing the fly nervous system with versatile

expression reagents. J Neurogenet 30:185–194.

doi:10.1080/01677063.2016.1248761

Taghert PH, Nitabach MN. 2012. Peptide Neuromodulation in Invertebrate Model

Systems. Neuron 76:82–97. doi:10.1016/j.neuron.2012.08.035

Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, Fetter RD,

Truman JW, Zlatic M, Cardona A, Nose A. 2017. Divergent Connectivity of

Homologous Command-like Neurons Mediates Segment-Specific Touch

Responses in Drosophila. Neuron 96:1373–1387.

doi:10.1016/j.neuron.2017.10.030

Terada SI, Matsubara D, Onodera K, Matsuzaki M, Uemura T, Usui T. 2016. Neuronal

processing of noxious thermal stimuli mediated by dendritic Ca2+ influx in

Drosophila somatosensory neurons. Elife 5:1–26. doi:10.7554/eLife.12959

Tracey WD, Wilson RI, Laurent G, Benzer S. 2003. painless, a Drosophila gene

essential for nociception. Cell 113:261–273. doi:10.1016/S0092-8674(03)00272-1

Tsetlin VI. 2015. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic

acetylcholine receptors: Pharmacological tools and endogenous modulators.

Trends Pharmacol Sci 36:109–123. doi:10.1016/j.tips.2014.11.003

Turner HN, Armengol K, Patel AA, Himmel NJ, Sullivan L, Iyer SC, Bhattacharya S, Iyer

EPR, Landry C, Galko MJ, Cox DN. 2016. The TRP Channels Pkd2, NompC, and

Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to

Noxious Cold in Drosophila. Curr Biol 26:3116–3128.

doi:10.1016/j.cub.2016.09.038

Veenstra JA, Khammassi H. 2017. Rudimentary expression of RYamide in Drosophila

melanogaster relative to other Drosophila species points to a functional decline of

this neuropeptide gene. Insect Biochem Mol Biol 83:68–79.

doi:10.1016/j.ibmb.2017.03.001

Wietek J, Rodriguez-Rozada S, Tutas J, Tenedini F, Grimm C, Oertner TG, Soba P,

Hegemann P, Simon Wiegert J. 2017. Anion-conducting channelrhodopsins with

tuned spectra and modified kinetics engineered for optogenetic manipulation of

behavior. Sci Rep 7:1–18. doi:10.1038/s41598-017-14330-y

Wu M, Robinson JE, Joiner WJ. 2014. SLEEPLESS is a bifunctional regulator of

excitability and cholinergic synaptic transmission. Curr Biol 24:621–629.

doi:10.1016/j.cub.2014.02.026

95

Wu MN, Joiner WJ, Dean T, Yue Z, Smith CJ, Chen D, Hoshi T, Sehgal A, Koh K. 2010.

SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization

and activity of Shaker. Nat Neurosci 13:69–75. doi:10.1038/nn.2454

Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. 2010. Light-avoidance-mediating

photoreceptors tile the Drosophila larval body wall. Nature 468:921–926.

doi:10.1038/nature09576

Yoshino J, Morikawa RK, Hasegawa E, Emoto K. 2017. Neural Circuitry that Evokes

Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila

Larvae. Curr Biol 27:2499–2504. doi:10.1016/j.cub.2017.06.068

Zandawala M, Marley R, Davies SA, Nässel DR. 2018a. Characterization of a set of

abdominal neuroendocrine cells that regulate stress physiology using colocalized

diuretic peptides in Drosophila. Cell Mol Life Sci 75:1099–1115.

doi:10.1007/s00018-017-2682-y

Zandawala M, Yurgel ME, Texada MJ, Liao S, Rewitz KF, Keene AC, Nässel DR.

2018b. Modulation of Drosophila post-feeding physiology and behavior by the

neuropeptide leucokinin. PLoS genetics 14: e1007767

doi:10.1371/journal.pgen.1007767

Zhong L, Bellemer A, Yan H, Honjo K, Robertson J, Hwang RY, Pitt GS, Tracey WD.

2012. Thermosensory and Nonthermosensory Isoforms of Drosophila

melanogaster TRPA1 Reveal Heat-Sensor Domains of a ThermoTRP Channel.

Cell Rep 1:43–55. doi:10.1016/j.celrep.2011.11.002

96

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る