リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fast Detection of Snakes and Emotional Faces in the Macaque Amygdala」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fast Detection of Snakes and Emotional Faces in the Macaque Amygdala

楊 梦 富山大学

2022.09.28

概要

〔目的〕
 Rapid defensive responses are often required to avoid predators. Neural systems for such behaviors have been argued to be controlled by an evolved subcortical “fear module” that in mammals includes the superior colliculus and pulvinar, two nuclei involved with vision, and the amygdala. Although the amygdala has been implicated in avoidance and emotional behaviors to biologically relevant stimuli and has neural connections with subcortical nuclei involved with vision, the responsiveness of amygdalar neurons to phylogenetically salient stimuli in primates, especially snakes and emotional faces, is currently unknown. In this study, neuronal activity in the amygdala was recorded from Japanese macaques (Macaca fuscata) during discrimination of eight categories of visual stimuli including snakes, monkey faces, human faces, carnivores, raptors, non-predators, monkey hands, and simple figures.

〔方法並びに成績〕
 Two adult monkeys were trained to perform a delayed non-matching to sample (DNMS) task and discriminate 8 categories of visual stimuli (snakes, monkey faces, human faces, raptors, carnivores, non-predators, monkey hands, and simple figures). While monkeys performed the DNMS task, a glass-insulated tungsten microelectrode was stereotaxically inserted into the amygdala to record neuronal activity. After recording, a tungsten marker was implanted near the target area, and the brains were perfused, removed from the skulls, and cut into 100-µm coronal sections. The sections were stained with Cresyl violet, and the location of each recording site was then determined by comparing the stereotaxic coordinates of recording sites with those of maker positions.
 Of 527 amygdalar neurons, 95 responded to one or more stimuli. Response characteristics of the amygdalar neurons indicated that they were more sensitive to the snakes and emotional faces than other stimuli. Response magnitudes and latencies of amygdalar neurons to snakes and monkey faces were stronger and faster than those to the other categories of stimuli, respectively. Furthermore, response magnitudes to the low pass-filtered snake images were larger than those to scrambled snake images. Finally, analyses of population activity of amygdalar neurons suggest that snakes and emotional faces were represented separately from the other stimuli during the 50–100 ms period from stimulus onset, and neutral faces during the 100–150 ms period.

〔総括〕
 These response characteristics indicate that the amygdala processes fast and coarse visual information from emotional faces and snakes (but not other predators of primates) among the eight categories of the visual stimuli, and suggest that, like anthropoid primate visual systems, the amygdala has been shaped over evolutionary time to detect appearance of potentially threatening stimuli including both emotional faces and snakes, the first of the modern predators of primates. These findings suggest that amygdalar neuronal responsiveness is similar to that in the pulvinar and medial prefrontal cortex in monkeys reported in previous studies. This specific pattern of responsiveness to snakes and emotional faces might be attributed to natural selection favoring rapid detection of snakes as well as emotional faces in primates via the “fear module”, which includes the superior colliculus, pulvinar, and amygdala.

この論文で使われている画像

参考文献

Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372(6507), 669-672. doi:10.1038/372669a0

Aggleton, J.P. (1985). A description of intra-amygdaloid connections in old world monkeys. Exp. Brain Res. 57(2), 390-399. doi:10.1007/BF00236545

Almeida, I., Soares, S. C., and Castelo-Branco, M. (2015). The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes. PloS one 10(6), e0129949. https://doi.org/10.1371/journal.pone.0129949

Bertels, J., Bourguignon, M., de Heering, A., Chetail, F., De Tiège, X., Cleeremans, A., and Destrebecqz, A. (2020). Snakes elicit specific neural responses in the human infant brain. Scientific reports 10(1), 7443. https://doi.org/10.1038/s41598-020-63619-y

Bertini, C., Pietrelli, M., Braghittoni, D., and Làdavas, E. (2018). Pulvinar Lesions Disrupt Fear-Related Implicit Visual Processing in Hemianopic Patients. Front. Psychol. 9, 2329. doi:10.3389/fpsyg.2018.02329

Bielski, K., Adamus, S., Kolada, E., Rączaszek-Leonardi, J., and Szatkowska, I. (2021). Parcellation of the human amygdala using recurrence quantification analysis. Neuroimage 227, 117644. doi:10.1016/j.neuroimage.2020.117644

Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., Strauss, M. M., Hyman, S. E., and Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17(5), 875– 887. https://doi.org/10.1016/s0896-6273(00)80219-6

Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B., and Pegna, A.J. (2019). Affective blindsight relies on low spatial frequencies. Neuropsychologia 128, 44-49. doi:10.1016/j.neuropsychologia.2017.10.009

Burrows, A.M. (2008). The facial expression musculature in primates and its evolutionary significance. Bioessays 30, 212–225. doi: 10.1002/bies.20719

Calder, A.J., Young, A.W., Rowland, D., Perrett, D.I., Hodges, J.R., and Etcoff, N.L. (1996). Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology 13(5), 699-745.

Clara, E., Tommasi, L., and Rogers, L.J. (2008). Social mobbing calls in common marmosets (Callithrix jacchus): effects of experience and associated cortisol levels. Anim. Cogn. 11(2), 349-58. doi: 10.1007/s10071-007-0125-0

Cook, M., Mineka, S. (1990). Selective associations in the observational conditioning of fear in rhesus monkeys. J. Exp. Psychol. Anim. Behav. Process 16, 372–389.

Day-Brown, J. D., Wei, H., Chomsung, R. D., Petry, H. M., and Bickford, M. E. (2010). Pulvinar projections to the striatum and amygdala in the tree shrew. Front. Neuroanat. 4:143. doi: 10.3389/fnana.2010.00143

de Gelder, B., Morris, J.S., and Dolan, R.J. (2005). Unconscious fear influences emotional awareness of faces and voices. Proc. Natl. Acad. Sci. U. S. A. 102(51), 18682-18687. doi:10.1073/pnas.0509179102

Diano, M., Celeghin, A., Bagnis, A., and Tamietto, M. (2017). Amygdala Response to Emotional Stimuli without Awareness: Facts and Interpretations. Front. Psychol. 7, 2029. doi: 10.3389/fpsyg.2016.02029

Dinh, H. T., Nishimaru, H., Matsumoto, J., Takamura, Y., Le, Q. V., Hori, E., et al. (2018). Superior neuronal detection of snakes and conspecific faces in the macaque medial prefrontal cortex. Cereb. Cortex 28, 2131–2145. doi: 10.1093/cercor/bhx118

Dinh, H.T., Meng, Y., Matsumoto, J., Setogawa, T., Nishimaru, H., Nishijo, H. (2022). Fast Detection of Snakes and Emotional Faces in the Macaque Amygdala. Front. Behav. Neurosci. 16, 839123. doi: 10.3389/fnbeh.2022.839123.

Dobson, S.D. (2009). Socioecological correlates of facial mobility in nonhuman primates. Amer. J. Phys. Anthropol. 139, 413–420. doi: 10.1002/ajpa.21007

Dobson, S. D., and Sherwood C. C. (2011). Correlated evolution of brain regions involved in producing and processing facial expressions in anthropoid primates. Biol. Lett. 7, 86–88. doi: 10.1098/rsbl.2010.0427

Elorette, C., Forcelli, P. A., Saunders, R. C., and Malkova, L. (2018). Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Front. Neural Circuits 12, 91. doi: 10.3389/fncir.2018.00091

Feinstein, J.S., Adolphs, R., Damasio, A., and Tranel, D. (2011). The human amygdala and the induction and experience of fear. Curr. Biol. 21(1), 34-38. doi: 10.1016/j.cub.2010.11.042

Gomes, N., Soares, S. C., Silva, S., and Silva, C. F. (2018). Mind the snake: Fear detection relies on low spatial frequencies. Emotion 18(6), 886–895. https://doi.org/10.1037/emo0000391

Grünert, U., Lee, S.C.S., Kwan, W.C., Mundinano, I.C., Bourne, J.A., and Martin, P.R. (2021). Retinal ganglion cells projecting to superior colliculus and pulvinar in marmoset. Brain Struct. Funct. 226(9), 2745-2762. doi: 10.1007/s00429-021-02295-8

Hakamata, Y., Sato, E., Komi, S., Moriguchi, Y., Izawa, S., Murayama, N., Hanakawa, T., Inoue, Y., and Tagaya, H. (2016). The functional activity and effective connectivity of pulvinar are modulated by individual differences in threat-related attentional bias. Scientific reports 6, 34777. https://doi.org/10.1038/srep34777

Hahn, S., Carlson, C., Singer, S., and Gronlund, S.D. (2006). Aging and visual search: automatic and controlled attentional bias to threat faces. Acta Psychol. (Amst). 123, 312–336. doi: 10.1016/j.actpsy.2006.01.008

Hershler, O., and Hochstein, S. (2005). At first sight: a high-level pop out effect for faces. Vision Res. 45, 1707–1724. doi: 10.1016/j.visres.2004.12.021

Honey, C., Kirchner, H., and VanRullen, R. (2008). Faces in the cloud: Fourier power spectrum biases ultrarapid face detection. Journal of Vision 8(12), 1–13. https://doi.org/10.1167/8.12.9

Hout, M. C., Papesh, M. H., and Goldinger, S. D. (2013). Multidimensional scaling. Wiley Interdisciplinary Reviews: Cognitive Science 4(1), 93-103. doi: 10.1002/wcs.1203

Isa, T., Marquez-Legorreta, E., Grillner, S., and Scott, E.K. (2021). The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol. 31(11), R741-R762. doi: 10.1016/j.cub.2021.04.001.

Isbell, L.A. (1994). Predation on primates: ecological patterns and evolutionary consequences. Evol. Anthropol. 3, 61–71. https://doi.org/10.1002/evan.1360030207

Isbell, L.A. (2006). Snakes as agents of evolutionary change in primate brains. J. Hum. Evol. 51, 1–35.

Isbell, L.A. (2009). Fruit, the tree, and the serpent: why we see so well. Cambridge, MA: Harvard University Press.

Ishikawa, J., Sakurai, Y., Ishikawa, A., and Mitsushima, D. (2020). Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology 237(3), 639–654. https://doi.org/10.1007/s00213-019-05398-7

Isosaka, T., Matsuo, T., Yamaguchi, T., Funabiki, K., Nakanishi, S., Kobayakawa, R., and Kobayakawa, K. (2015). Htr2a-Expressing Cells in the Central Amygdala Control the Hierarchy between Innate and Learned Fear. Cell 163(5), 1153–1164. https://doi.org/10.1016/j.cell.2015.10.047

Itti, L., and Koch, C. (2001). Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203. doi: 10.1038/35058500

Izquierdo, A., Suda, R.K., and Murray, E.A. (2005). Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J. Neurosci. 25(37), 8534-8542. doi:10.1523/JNEUROSCI.1232-05.2005

Kalin, N.H., Shelton, S.E., Davidson, R.J., and Kelley, A.E. (2001). The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. J. Neurosci. 21(6), 2067-2074. doi:10.1523/JNEUROSCI.21-06- 02067.2001

Kalin, N.H., Shelton, S.E., and Davidson, R.J. (2004). The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24(24), 5506-5515. doi:10.1523/JNEUROSCI.0292-04.2004

Kawai, N., and Koda, H. (2016). Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: evolutionary origins of fear-relevant animals. J. Comp. Psychol. 130, 299–303. doi: 10.1037/com0000032

Koller, K., Rafal, R.D., Platt, A., and Mitchell, N.D. (2019). Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia 128, 78-86. doi:10.1016/j.neuropsychologia.2018.01.027

Kusama, T., and Mabuchi, M. (1970). Stereotaxic atlas of the brain of Macaca fuscata. Tokyo: Tokyo University Press.

Langton, S.R., Law, A.S., Burton, A.M., and Schweinberger, S.R. (2008). Attention capture by faces. Cognition 107, 330–342. https://doi.org/10.1016/j.cognition.2007.07.012

Le, Q.V., Isbell, L.A., Matsumoto, J., Le, V.Q., Nishimaru, H., Hori, E., Maior, R.S., Tomaz, C., Tran, A.H., Ono, T., and Nishijo, H. (2016). Snakes elicit earlier, and monkey faces, later, gamma oscillations in macaque pulvinar neurons. Sci. Rep. 6, 20595. doi: 10.1038/srep20595

Le, Q. V., Isbell, L. A., Nguyen, M. N., Matsumoto, J., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., and Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proc. Natl. Acad. Sci. U.S.A. 110, 19000–19005. doi: 10.1073/pnas.1312648110

Machado, C.J., Kazama, A.M., and Bachevalier, J. (2009). Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion 9(2), 147-163. doi:10.1037/a0014539

Maior, R. S., Hori, E., Barros, M., Teixeira, D. S., Tavares, M. C. H., Ono, T., et al. (2011). Superior colliculus lesions impair threat responsiveness in infant capuchin monkeys. Neurosci. Lett. 504, 257–260. doi: 10.1016/j.neulet.2011.09.042

Maior, R. S., Hori, E., Tomaz, C., Ono, T., and Nishijo, H. (2010). The monkey pulvinar neurons differentially respond to emotional expressions of human faces. Behav. Brain Res. 215, 129–135. doi: 10.1016/j.bbr.2010.07.009

Martinez, R.C., Carvalho-Netto, E.F., Ribeiro-Barbosa, E.R., Baldo, M.V., and Canteras, N.S. (2011). Amygdalar roles during exposure to a live predator and to a predator- associated context. Neuroscience 172, 314-328. doi:10.1016/j.neuroscience.2010.10.033

Martínez-Íñigo, L., Engelhardt, A., Agil, M., Pilot, M., and Majolo, B. (2021). Intergroup lethal gang attacks in wild crested macaques, Macaca nigra. Anim. Behav. 180, 81-91. doi: 10.1016/j.anbehav.2021.08.002

Mason, W.A., Capitanio, J.P., Machado, C.J., Mendoza, S.P., and Amaral, D.G. (2006). Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): generality and individual consistency of effects. Emotion 6(1), 73-81. doi:10.1037/1528-3542.6.1.73

Matsuda, K. (1996). Measurement system of the eye positions by using oval fitting of a pupil. Neurosci. Res. Suppl. 25, 270.

McFadyen, J., Dolan, R. J., and Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat. Rev. Neurosci. 21(5), 264–276. https://doi.org/10.1038/s41583-020-0287-1

McFadyen, J., Mattingley, J.B., and Garrido, M.I. (2019). An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. Elife 8, e40766. doi:10.7554/eLife.40766

McGarry, L. M., and Carter, A. G. (2017). Prefrontal Cortex Drives Distinct Projection Neurons in the Basolateral Amygdala. Cell reports 21(6), 1426–1433. https://doi.org/10.1016/j.celrep.2017.10.046

Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., Vuilleumier, P., Gil-Nagel, A., and Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neurosci. 19(8), 1041–1049. https://doi.org/10.1038/nn.4324

Meunier, M., Bachevalier, J., Murray, E.A., Málková, L., and Mishkin, M. (1999). Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. Eur. J. Neurosci. 11(12), 4403-4418. doi:10.1046/j.1460-9568.1999.00854.x

Morris, J. S., DeGelder, B., Weiskrantz, L., and Dolan, R. J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124, 1241–1252. doi: 10.1093/brain/124.6.1241

Nelson, E. E., Shelton, S. E., and Kalin, N. H. (2003). Individual differences in the responses of naïve rhesus monkeys to snakes. Emotion 3, 3–11. doi: 10.1037/1528-3542.3.1.3

Nishijo, H., Ono, T., and Nishino, H. (1988a). Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci. 8, 3570–3583. doi: 10.1523/JNEUROSCI.08-10-03570.1988

Nishijo, H., Ono, T., and Nishino, H. (1988b). Topographic distribution of modality-specific amygdalar neurons in alert monkey. J. Neurosci. 8, 3556–3569. doi: 10.1523/JNEUROSCI.08-10-03556.1988

Öhman, A., Lundqvist, D., and Esteves, F. (2001). The face in the crowd revisited: a threat advantage with schematic stimuli. J. Pers. Soc. Psychol. 80, 381–396. https://doi.org/10.1037/0022-3514.80.3.381

Öhman, A., and Mineka, S. (2001). Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. J. Pers. Soc. Psychol. 80, 381–396. doi: 10.1037/0022-3514.80.3.381

Öhman, A., Soares, S.C., Juth, P., Lindström, B., and Esteves, F. (2012). Evolutionary derived modulations of attention to two common fear stimuli: Serpents and hostile humans. Journal of Cognitive Psychology 24, 17-32.

Pegna, A. J., Khateb, A., Lazeyras, F., and Seghier, M. L. (2005). Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci. 8(1), 24–25. https://doi.org/10.1038/nn1364

Pitcher, D., Japee, S., Rauth, L., and Ungerleider, L. G. (2017). The Superior Temporal Sulcus Is Causally Connected to the Amygdala: A Combined TBS-fMRI Study. J. Neurosci. 37(5), 1156–1161. doi: 10.1523/JNEUROSCI.0114-16.2016

Railo, H., Karhu, V.M., Mast, J., Pesonen, H., and Koivisto, M. (2016). Rapid and accurate processing of multiple objects in briefly presented scenes. J. Vis. 16(3), 8. doi: 10.1167/16.3.8

Root, C. M., Denny, C. A., Hen, R., and Axel, R. (2014). The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 515(7526), 269–273. https://doi.org/10.1038/nature13897

Rotshtein, P., Vuilleumier, P., Winston, J., Driver, J., and Dolan, R. (2007). Distinct and convergent visual processing of high and low spatial frequency information in faces. Cereb. Cortex 17, 2713–2724. doi: 10.1093/cercor/bhl180

Schaefer, H.S., Larson, C.L., Davidson, R.J., and Coan, J.A. (2014). Brain, body, and cognition: neural, physiological and self-report correlates of phobic and normative fear. Biol. Psychol. 98, 59-69. doi: 10.1016/j.biopsycho.2013.12.011

Sackett, G. P. (1966). Monkeys reared in isolation with pictures as visual input: evidence for an innate releasing mechanism. Science 154, 1468–1473. doi: 10.1126/science.154.3755.1468

Shepard, R.N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27, 125–140.

Simoncelli, E.P., and Olshausen, B.A. (2001). Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193-1216. doi: 10.1146/annurev.neuro.24.1.1193

Soares, S.C., Maior, R.S., Isbell, L.A., Tomaz, C., and Nishijo, H. (2017). Fast detector/first responder: interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Front. Neurosci. 11, 67. doi: 10.3389/fnins.2017.00067

Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proc. Natl. Acad. Sci. U S A 8, 394–398. doi: 10.1073/pnas.0706079105

Tamietto, M., and de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709. doi: 10.1038/nrn2889

Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L., and Goebel, R. (2012). Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr. Biol. 22, 1449–1455. doi: 10.1016/j.cub.2012.06.006

Tazumi, T., Hori, E., Maior, R.S., Ono, T., and Nishijo, H. (2010). Neural correlates to seen gaze-direction and head orientation in the macaque monkey amygdala. Neuroscience 169, 287–301. doi: 10.1016/j.neuroscience.2010.04.028

Troiani, V., Price, E.T., and Schultz, R.T. (2014). Unseen fearful faces promote amygdala guidance of attention. Soc. Cogn. Affect. Neurosci. 9(2), 133-140. doi:10.1093/scan/nss116

Vuilleumier, P., Armony, J.L., Driver, J., and Dolan, R.J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6, 624–631.

Waleszczyk, W.J., Wang, C., Benedek, G., Burke, W., and Dreher, B. (2004). Motion sensitivity in cat's superior colliculus: contribution of different visual processing channels to response properties of collicular neurons. Acta Neurobiol. Exp. (Wars.) 4(2), 209-28.

Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., and Tanaka, J. W. (2010). Controlling low-level image properties: the SHINE toolbox. Behavior research methods 42(3), 671–684. https://doi.org/10.3758/BRM.42.3.671

Yoshida, M., Itti, L., Berg, D. J., Ikeda, T., Kato, R., Takaura, K., et al. (2012). Residual attention guidance in blindsight monkeys watching complex natural scenes. Curr. Biol. 22, 1429–1434. doi: 10.1016/j.cub.2012.05.046

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る