リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oxidopyridinium Cycloadditions Revisited: A Combined Computational and Experimental Study on the Reactivity of 1-(2-Pyrimidyl)-3-oxidopyridinium Betaine」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oxidopyridinium Cycloadditions Revisited: A Combined Computational and Experimental Study on the Reactivity of 1-(2-Pyrimidyl)-3-oxidopyridinium Betaine

Yamamoto, Yoshihiko Shizume, Yudai Tazawa, Syunji Yasui, Takeshi 名古屋大学

2023.03.03

概要

Since the pioneering studies by the Katritzky group,1 the (5+2) cycloaddition of
oxidopyridinium betaines with dipolarophiles has been extensively investigated because
it provides straightforward access to the tropane framework, which is found in cocaine
and related bioactive compounds (Figure 1a).2,3 In addition, oxidopyridinium (5+2)
cycloadditions have been utilized for the synthesis of natural product-like tropane
scaffolds,4 as well as complex natural products.5
Katritzky and Takeuchi reported that 1-methyl-3-oxidopyridinium reacted with
electron-deficient alkenes, such as methyl acrylate and N-phenylmaleimide, at elevated
temperatures to afford the corresponding (5+2) cycloadducts (Figure 1b).6 Although the
reaction with methyl acrylate resulted in the formation of a mixture of exo- and endoadducts, the reaction with N-phenylmaleimide selectively produced an exo-adduct. Later,
Katritzky et al. ...

この論文で使われている画像

参考文献

1. (a) Dennis, N.; Katritzky, A. R.; Takeuchi, Y. Synthetic Applications of

Heteroaromatic Betaines with Six-Membered Rings. Angew. Chem. Int. Ed. 1976, 15,

1-60. (b) Katritzky, A. R.; Dennis, N. Cycloaddition Reactions of Heteroaromatic SixMembered Rings. Chem. Rev. 1989, 89, 827-861.

2. (a) Jung, M. E.; Longmei, Z.; Tangsheng, P.; Huiyan, Z.; Yan, L.; Jingyu, S. Total

Synthesis of Bao Gong Teng A, a Natural Antiglaucoma Compound. J. Org. Chem.

1992, 57, 3528-3530. (b) Kozikowski, A. P.; Araldi, G. L.; Ball, R. G. Dipolar

Cycloaddition Route to Diverse Analogues of Cocaine: The 6- and 7-Substituted 3Phenyltropanes. J. Org. Chem. 1997, 62, 503-509. (c) Kozikowski, A. P.; Araldi, G.

L.; Prakash, K. R. C.; Zhang, M.; Johnson, K. M. Synthesis and Biological properties

of New 2b-Alkyl- and 2b-Aryl-3-(substituted phenyl)tropane Derivatives:

Stereochemical Effect of C-3 on Affinity and Selectivity for Neuronal Dopamine and

58

Serotonin Transporters. J. Med. Chem. 1998, 41, 4973-4982. (d) Prakash, K. P. C.;

Trzcinska, M.; Johnson, K. M.; Kozikowski, A. P. An Enantioselective Synthesis and

Biobehavioral Evaluation of 7-Fluoro-3-(p-fluorophenyl)-2-propyltropanes. Bioorg.

Med. Chem. Lett. 2000, 10, 1443-1446.

3. According to the IUPAC rules, the cycloaddition symbolism “(m+n)” is used in this

article, although the symbolism “[m+n]”, in which numbers “m” and “n” show

electrons in the interacting units, has been used conventionally for the

oxidopyridinium cycloadditions.

4. (a) Xu, H.; Golz, C.; Strohmann, C.; Antonchick, A. P.; Waldmann, H.

Enantiodivergent Combination of Natural Product Scaffolds Enabled by Catalytic

Enantioselective Cycloaddition. Angew. Chem. Int. Ed. 2016, 55, 7761-7765. (b)

Lowe, R. A.; Taylor, D.; Chibale, K.; Nelson, A.; Marsden, S. P. Synthesis and

evaluation of the performance of a small molecule library based on diverse tropanerelated scaffolds. Bioorg. Med. Chem. 2020, 28, 115442.

5. (a) Krüger, S.; Gaich, T. Enantioselective, Protecting-Group-Free Total Synthesis of

Sarpagine Alkaloids—A Generalized Approach. Angew. Chem. Int. Ed. 2015, 54, 315-

59

317. (b) Krüger, S.; Gaich, T. Total Syntheses of Vellosimine, N-Methylvellosimine,

and 10-Methoxyvellosimine and Formal Synthesis of 16-Epinormacusine B through

a [5+2] Cycloaddition. Eur. J. Org. Chem. 2016, 4893-4899. (c) Gerlinger, C. K. G.;

Krüger, S.; Gaich, T. Total Synthesis of Parvineostemonine by Structure Pattern

Recognition: A Unified Approach to Stemona and Sarpagine Alkaloids. Chem. Eur. J.

2018, 24, 3994-3997.

6. Katritzky, A. R.; Takeuchi, Y. 1,3-Dipolar Character of Six-membered Aromatic

Rings. Part I. 1-Methyl-3-oxidopyridinium. J. Chem. Soc. (C) 1971, 874-877.

7. Dennis, N.; Ibrahim, B.; Katritzky, A. R. 1,3-Dipolar Character of Six-membered

Aromatic Rings. Part XXI. Thermal Cycloadditions of 1-(5-Nitro-2-pyridyl)- and 1(4,6-Dimethyl-pyrimidin-2-yl)-3-oxidopyridinium with 2, 4, and 6 p-Electron

Components. J. Chem. Soc. Perkin 1, 1976, 2307-2328.

8. Kuthanapillil, J. M.; Thulasi, S.; Rajan, R.; Krishnan, K. S.; Suresh, E.;

Radhakrishnan, K. V. Expeditious synthesis of N-bridged heterocycles via dipolar

cycloaddition of pentafulvenes with 3-oxidopyridinium betaines. Tetrahedron 2011,

67, 1272-1280.

60

9. This method was demonstrated to be effective for the computational analysis of the

(5+2) cycloaddition of closely related oxidopyrylium species: Yamamoto, Y.;

Nakazato, Y.; Tadano, R.; Yasui, T. Combined Computational and Experimental Study

on [5 + 2] Cycloaddition of 2-Trifluoromethylated Oxidopyrylium Species Leading

to 1-(Trifluoromethyl)-8-oxabicyclo[3.2.1]oct-3-en-2-ones. J. Org. Chem. 2022, 87,

10216-10228.

10. Liu, F.; Paton, R. S.; Kim, S.; Liang, Y.; Houk, K. N. Diels–Alder Reactivities of

Strained and Unstrained Cycloalkenes with Normal and Inverse-Electron-Demand

Dienes: Activation Barriers and Distortion/Interaction Analysis. J. Am. Chem. Soc.

2013, 135, 15642-15649.

11. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang,

W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498-6506.

12. Dennis, N.; Ibrahim, B.; Katritzky, A. R. 1,3-Dipolar Character of Six-membered

Aromatic Rings. Part XX. Preparation and Dimerisation of 1-(5-Nitro-2-pyridyl)- and

1-(4,6-Dimethyl-pyrimidin-2-yl)-3-oxidopyridinium. J. Chem. Soc. Perkin 1, 1976,

2296-2307.

61

13. (a) Ducrot, P.-H.; Lallemand, J. Y. Structure of the Calystegines: new alkaloids of the

nortropane family. Tetrahedron Lett. 1990, 31, 3879-3882. (b) Lomenzo, S. A.;

Enmon, J. L.; Troyer, M. C.; Trudell, M. L. A FACILE AND EFFICIENT

SYNTHESIS OF (±)-TROPAN-2-ONE. Synth. Commun. 1995, 25, 3681-3690.

14. Kuthanapillil, J. M.; Nijamudheen, A.; Joseph, N.; Prakash, P.; Suresh, E.; Datta, A.

Radhakrishnan, Cycloaddition profile of pentafulvenes with 3-oxidopyrylium

betaine: experimental and theoretical investigations. Tetrahedron 2013, 69, 97519760.

15. (a) Burns, J. M.; Boittier, E. D. Pathway Bifurcation in the (4+3)/(5+2)-Cycloaddition

of Butadiene and Oxidopyrylium Ylides: The Significance of Molecular Orbital

Isosymmetry. J. Org. Chem. 2019, 84, 5997-6005. (b) Yu, P.; Chen, T. Q.; Yang, Z.;

He, C. Q.; Patel, A.; Lam, Y.; Liu, C.-Y.; Houk, K. N. Mecahnisms and Origins of

Periselectivity

of

the Ambimodal

[6+4]

Cycloadditions

of

Tropone

to

Dimethylfulvene. J. Am. Chem. Soc. 2017, 139, 8251-8258.

16. Fu, C.; Lora, N.; Kirchhoefer, P. L.; Lee, D. R.; Altenhofer, E.; Barnes, C. L.;

Hungerford, N. L.; Krenske, E. H.; Harmata, M. (4+3) Cycloaddition Reactions of N-

62

Alkyl Oxidopyridinium Ions. Angew. Chem. Int. Ed. Engl. 2017, 56, 14682-14687.

17. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,

X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.

Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. WilliamsYoung, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,

D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M.

Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F.

Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T.

A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S.

S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.

Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,

Gaussian, Inc., Wallingford CT, 2016.

18. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with

damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-

63

6620.

19. (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital

Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular

Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257-2261. (b)

Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular

orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222. (c) Fracl, M.

M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J.

A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set

for second-row elements. J. Chem. Phys. 1982, 77, 3654-3665.

20. (a) Fukui, K. The Path of Chemical Reactions – The IRC Approach. Acc. Chem. Res.

1981, 14, 363-368. (b) Gonzalez, C.; Schlegel, H. B. Reaction path following in massweighted internal coordinates. J. Phys. Chem. 1990, 94, 5523-5527.

21. (a) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in

Chemistry. Acc. Chem. Res. 2008, 41, 157. (b) Zhao, Y.; Truhlar, D. G. The M06 suite

of density functionals for main group thermochemistry, thermochemical kinetics,

noncovalent interactions, excited states, and transition elements: two new functionals

64

and systematic testing of four M06-class functionals and 12 other functionals. Theor.

Chem. Acc. 2008, 120, 215-241.

22. (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular

prbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980,

72, 650-654. (b) McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets for

molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980, 72,

5639-5648. (c) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular

orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys.

1984, 80, 3265-3269. (d) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer,

P. v. R. Efficient diffuse function-augmented basis sets for anion calculations. III.

The 3-21+G basis set for first-row elements, Li–F. J. Comp. Chem. 1983, 4, 294301.

23. Pieniazek, S. N.; Clemente, F. R.; Houk, K. N. Sources of Error in DFT Computations

of C−C Bond Formation Thermochemistries: p→s Transformations and Error

Cancellation by DFT Methods. Angew. Chem. Int. Ed. 2008, 47, 7746-7749.

24. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on

65

Solute Electron Density and on a Continuum Model of the Solvent Defined by the

Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113,

6378-6396.

25. CYLview,

1.0b;

Legault,

C.

Y.,

Université

de

Sherbrooke,

2009

(http://www.cylview.org).

26. Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput.

Chem. 2012, 33, 580-592.

27. VMD for WIN64, Ver. 1.9.4a53; NIH Center for Macromolecular Modeling &

Bioinformatics,

University

of

Illinois

at

Urbana-Champaign;

2021

(https://www.ks.uiuc.edu/Research/vmd/).

66

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る