リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A two-step screening to optimize the signal response of an auto-fluorescent protein-based biosensor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A two-step screening to optimize the signal response of an auto-fluorescent protein-based biosensor

Tajima, Shunsuke Nakata, Eiji Sakaguchi, Reiko Saimura, Masayuki Mori, Yasuo Morii, Takashi 京都大学 DOI:10.1039/d2ra02226e

2022.05.20

概要

Auto-fluorescent protein (AFP)-based biosensors transduce the structural change in their embedded recognition modules induced by recognition/reaction events to fluorescence signal changes of AFP. The lack of detailed structural information on the recognition module often makes it difficult to optimize AFP-based biosensors. To enhance the signal response derived from detecting the putative structural change in the nitric oxide (NO)-sensing segment of transient receptor potential canonical 5 (TRPC5) fused to enhanced green fluorescent protein (EGFP), EGFP-TRPC5, a facile two-step screening strategy, in silico first and in vitro second, was applied to variants of EGFP-TRPC5 deletion-mutated within the recognition module. In in silico screening, the structural changes of the recognition modules were evaluated as root-mean-square-deviation (RMSD) values, and 10 candidates were efficiently selected from 47 derivatives. Through in vitro screening, four mutants were identified that showed a larger change in signal response than the parent EGFP-TRPC5. One mutant in particular, 551-575, showed four times larger change upon reaction with NO and H₂O₂. Furthermore, mutant 551-575 also showed a signal response upon reaction with H₂O₂ in mammalian HEK293 cells, indicating that the mutant has the potential to be applied as a biosensor for cell measurement. Therefore, this two-step screening method effectively allows the selection of AFP-based biosensors with sufficiently enhanced signal responses for application in mammalian cells.

この論文で使われている画像

参考文献

1 B. N. Giepmans, S. R. Adams, M. H. Ellisman and R. Y. Tsien,

Science, 2006, 312, 217–224.

2 A. E. Palmer, Y. Qin, J. G. Park and J. E. McCombs, Trends

Biotechnol., 2011, 29, 144–152.

3 L. Wenfeng, M. Deng, C. Yang, F. Liu, X. Guan, Y. Du,

L. Wang and J. Chu, J. Phys. D: Appl. Phys., 2020, 53, 113001.

4 Y. N. Tallini, M. Ohkura, B. R. Choi, G. Ji, K. Imoto, R. Doran,

J. Lee, P. Plan, J. Wilson, H. B. Xin, A. Sanbe, J. Gulick,

J. Mathai, J. Robbins, G. Salama, J. Nakai and

M. I. Kotlikoff, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,

4753–4758.

5 J. Zhang, R. E. Campbell, A. Y. Ting and R. Y. Tsien, Nat. Rev.

Mol. Cell Biol., 2002, 3, 906–918.

6 J. Berg, Y. P. Hung and G. Yellen, Nat. Methods, 2009, 6, 161–

166.

7 J. Nakai, M. Ohkura and K. Imoto, Nat. Biotechnol., 2001, 19,

137–141.

8 T. Nagai, A. Sawano, E. S. Park and A. Miyawaki, Proc. Natl.

Acad. Sci. U. S. A., 2001, 98, 3197–3202.

9 S. A. Yigong, Cell, 2014, 159, 995–1014.

10 H. A. Hauptman, Struct. Chem., 1990, 6, 617–620.

11 P. A. Cramer, Cell, 2014, 159, 985–994.

12 D. Marion, Mol. Cell. Proteomics, 2013, 12, 3006–3025.

13 K. M¨

uthrich, Nat. Struct. Mol. Biol., 2001, 8, 923–925.

14 Y. Cheng, Science, 2018, 361, 876–880.

© 2022 The Author(s). Published by the Royal Society of Chemistry

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Open Access Article. Published on 20 May 2022. Downloaded on 7/4/2022 9:43:00 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Paper

15 X. C. Bai and G. McMullan, Trends Biochem. Sci., 2015, 40,

49–57.

16 E. Nogales and S. H. W. Scheres, Mol. Cell, 2015, 58, 677–689.

17 T. Kitaguchi, M. Oya, Y. Wada, T. Tsuboi and A. Miyawaki,

Biochem. J., 2013, 450, 365–373.

18 Y. Qin, D. W. Sammond, E. Braselmann, M. C. Carpenter and

A. M. Palmer, ACS Chem. Biol., 2016, 11, 2744–2751.

19 S. Matsuda, K. Harada, M. Ito, M. Takizawa, D. Wongso,

T. Tsuboi and T. Kitaguchi, ACS Sens., 2017, 2, 46–51.

20 K. Tainaka, R. Sakaguchi, H. Hayashi, S. Nakano, F. F. Liew

and T. Morii, Sensors, 2010, 10, 1355–1376.

21 E. Nakata, F. F. Liew, S. Nakano and T. Morii, in BiosensorsEmerging materials and Applications, ed. P. A. Serra,

IntechOpen, 2011, pp. 123–140.

22 J. S. Marvin, B. G. Borghuis, L. Tian, J. Cichon, M. T. Harnett,

J. Akerboom, A. Gordus, S. L. Renninger, T. W. Chen,

C. Bargmann, M. B. Orger, E. R. Schreiter, J. B. Demb,

W. B. Gan, S. A. Hires and L. L. Looger, Nat. Methods,

2013, 10, 162–170.

23 T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley,

W.-H. Xiong, R. W. Folk, G. J. Broussard, R. Liang,

M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow,

A. Nimmerjahn, V. Gradinaru, J. T. Williams and L. Tian,

Science, 2018, 360, eaat4422.

24 M. Jing, P. Zhang, G. Wang, J. Feng, L. Mesik, J. Zeng,

H. Jiang, S. Wang, J. C. Looby, N. A. Guagliardo,

L. W. Langma, J. Lu, Y. Zuo, D. A. Talmage, L. W. Role,

P. Q. Barrett, L. I. Zhang, M. Luo, Y. Song, J. J. Zhu and

Y. Li, Nat. Biotechnol., 2018, 36, 726–737.

25 J. S. Marvin, Y. Shimoda, V. Magloire, M. Leite,

T. Kawashima, T. P. Jensen, I. Kolb, E. L. Knott, O. Novak,

K. Podgorski, N. J. Leidenheimer, D. A. Rusakov,

M. B. Ahrens, D. M. Kullman and L. L. Looger, Nat.

Methods, 2019, 16, 763–770.

26 R. Sakaguchi, T. Endoh, S. Yamamoto, K. Tainaka,

K. Sugimoto, N. Fujieda, S. Kiyonaka, Y. Mori and T. Morii,

Bioorg. Med. Chem., 2009, 17, 7381–7386.

27 M. Gees, B. Colsoul and B. Nilius, Cold Spring Harbor

Perspect. Biol., 2010, 2, a003962.

28 T. Yoshida, R. Inoue, T. Morii, N. Takahashi, S. Yamamoto,

Y. Hara, M. Tominaga, S. Shimizu, Y. Sato and Y. Mori, Nat.

Chem. Biol., 2006, 2, 596–607.

29 J. Duan, J. Li, G. L. Chen, Y. Ge, J. Liu, K. Xie, X. Peng,

W. Zhou, J. Zhong, Y. Zhang, J. Xu, C. Xue, B. Liang,

L. Zhu, W. Liu, C. Zhang, X. L. Tian, J. Wang,

D. E. Clapham, B. Zeng, Z. Li and J. Zhang, Sci. Adv., 2019,

5, eaaw7935.

30 D. J. Wright, K. J. Simmons, R. M. Johnson, D. J. Beech,

S. P. Muench and R. S. Bon, Commun. Biol., 2020, 3, 704.

31 P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota,

E. G. DeMaster, D. W. Shoeman and H. T. Nagasawa,

Biochemistry, 1998, 37, 5362–5371.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

32 M. D. Percival, M. Ouellet, C. Campagnolo, D. Claveau and

C. Li, Biochemistry, 1999, 38, 13574–13583.

33 J. D. P´

edelacq, S. Cabantous, T. Tran, T. C. Terwilliger and

G. S. Waldo, Nat. Biotechnol., 2006, 24, 79–88.

34 S. Tajima, E. Nakata, R. Sakaguchi, M. Saimura, Y. Mori and

T. Morii, Bioorg. Med. Chem., 2020, 28, 115430.

35 H. Morise, O. Shimomura, F. H. Johnson and J. Winant,

Biochemistry, 1974, 13, 2656–2662.

36 K. Bejec, T. K. Sixma, P. A. Kitts, S. R. Kain, R. Y. Tsien,

M. Orm¨

o and S. J. Remington, Proc. Natl. Acad. Sci. U. S. A.,

1997, 94, 2306–2311.

37 B. P. Cormack, R. H. Valdivia and S. Falkow, Gene, 1996, 173,

33–38.

38 G. L. Ellman, Arch. Biochem. Biophys., 1959, 82, 70–77.

39 M. A. Elsliger, R. M. Wachter, G. T. Hanson, K. Kallio and

J. Remington, Biochemistry, 1999, 38, 5296–5301.

40 L. M. Costantini, M. Baloban, M. L. Markwardt, M. Rizzo,

F. Guo, V. V. Verkhusha and E. L. Snapp, Nat. Commun.,

2015, 6, 7670.

41 J. A. Hrabie, J. R. Klose, D. A. Wink and L. K. Keefer, J. Org.

Chem., 1993, 58, 1472–1476.

42 S. R. Jaffrey, H. Erdjument-Bromage, C. D. Ferris, P. Tempst

and S. H. Snyder, Nat. Cell Biol., 2001, 3, 193–197.

43 C. E. Paulsen and K. S. Carroll, Chem. Rev., 2013, 113, 4633–

4679.

44 S. Garc´ıa-Santamaria, S. Boronat and E. Hidalgo,

Biochemistry, 2014, 53, 2560–2580.

45 P. M. Schaefer, S. Kalinina, A. Rueck, C. A. F. von Arnim and

B. von Einem, Cytometry, Part A, 2019, 95, 34–46.

46 G. A. Wagnieres, W. M. Star and B. C. Wilson, Photochem.

Photobiol., 1998, 68, 603–632.

47 J. Loscalzo and G. Welch, Prog. Cardiovasc. Dis., 1995, 38, 87–

104.

48 S. A. Bradley and J. R. Steinert, Oxid. Med. Cell. Longevity,

2016, 2016, 5681036.

49 A. L. Horenberg, A. M. Houghton, S. Pandey, V. Seshadri and

W. H. Guilford, Cytoskeleton, 2019, 76, 243–252.

50 E. Eroglu, B. Gottschalk, S. Charoensin, S. Blass, H. Bischof,

R. Rost, C. T. Madreiter-Sokolowski, B. Pelzmann,

E. Bernhart, W. Sattler, S. Hallstr¨

om, T. Malinski,

M. Waldeck-Weiermair, W. F. Graier and R. Malli, Nat.

Commun., 2016, 7, 10623.

51 V. V. Belousov, A. F. Fradkov, K. A. Lukyanov,

D. B. Staroverov, K. S. Shakhbazov, A. V. Terskikh and

S. Lukyanov, Nat. Methods, 2006, 3, 281.

52 D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall and

J. S. Stamler, Nat. Rev. Mol. Cell Biol., 2005, 6, 150–166.

53 G. Roos, N. Foloppe and J. Messens, Antioxid. Redox

Signaling, 2012, 18, 94–127.

RSC Adv., 2022, 12, 15407–15419 | 15419

...

参考文献をもっと見る