リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A New Production Method for Green Biodiesel Fuel (BDF) and Effects of Gamma-ray Irradiation and Ultrafine Bubble on BDF Stability」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A New Production Method for Green Biodiesel Fuel (BDF) and Effects of Gamma-ray Irradiation and Ultrafine Bubble on BDF Stability

Pham Thi Phuong Thao 大阪府立大学 DOI:info:doi/10.24729/00017604

2022.03.03

概要

The world’s energy consumption reached to 14 billion tons of oil equivalent (TOE) of which fossil fuels covered >80% of the world demand in 2018 [1]. They huge emission of anthropogenic carbon dioxide (CO2) derived from the combustion of fossil fuels exceed the Earth’s natural capacity to sequester the CO2 level in the atmosphere. From 2007 to 2030 the level of CO2 has been estimated to increase by 80% approximately [2]. Therefore, the continuous consumption of fossil fuels for energy production becomes more negatively significant, thus leading to global warming and climate change. These reasons have driven the investigate for alternative sources which are renewable and have a lower environmental impact instead of using fossil fuels [3–6].

Biofuels, are fuels derived from biomass, which may be solid, liquid, or gas [7,8]. According to the biomass feedstocks, biofuels are classified in four different generations [8,9]. Table 1.1 shows the major sources, processes and the end products of different generations of biofuel.

The production of first generation of biofuels is mainly from wheat, barley, corn, oilseed, and sugarcane potato, soybean and sunflower. The ethanol has been produced through fermentation of raw corn and sugarcane with the help of fungal mycelia. Rhizopus sp. and Saccharomyces cerevisiae starch-digesting microbes are using for fermentation of raw corn flour for the production of ethanol. Sucrose or starch converted into bioethanol, using initial enzymatic hydrolysis methods at industrial processing system for massive scale first-generation biofuels production. Secondgeneration biofuels are generally referred to as bioethanol formation from forest dregs, waste wood residues, easily available crops, and organic waste materials. The thirdgeneration biofuels depend on the metabolism of cellulolytic bacteria and production of biodiesel fuel (BDF) from microalgae and microbes due to their rapid growth rate as well as CO2 fixation. engineering using of post-genome technology on microalgae gives rise to the production of fourth-generation biofuel [4,7–10].

この論文で使われている画像

参考文献

Chapter1

[1] Jung S, Shetti NP, Reddy KR, Nadagouda MN, Park YK, Aminabhavi TM, et al. Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks – A review. Energy Convers Manag 2021;236:114038. https://doi.org/10.1016/j.enconman.2021.114038.

[2] Singh D, Sharma D, Soni SL, Sharma S, Kumar Sharma P, Jhalani A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020;262:116553. https://doi.org/10.1016/j.fuel.2019.116553.

[3] Puri M, Abraham RE, Barrow CJ. Biofuel production: Prospects, challenges and feedstock in Australia. Renew Sustain Energy Rev 2012;16:6022–31. https://doi.org/10.1016/j.rser.2012.06.025.

[4] Unglert M, Bockey D, Bofinger C, Buchholz B, Fisch G, Luther R, et al. Action areas and the need for research in biofuels. Fuel 2020;268. https://doi.org/10.1016/j.fuel.2020.117227.

[5] Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, et al. Biofuels: A technological perspective. Energy Environ Sci 2008;1:542–64. https://doi.org/10.1039/b807094f.

[6] Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol 2014;169:742–9. https://doi.org/10.1016/j.biortech.2014.07.022.

[7] Lin CY, Lu C. Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renew Sustain Energy Rev 2021;136:110445. https://doi.org/10.1016/j.rser.2020.110445.

[8] Dutta K, Daverey A, Lin JG. Evolution retrospective for alternative fuels: First to fourth generation. Renew Energy 2014;69:114–22. https://doi.org/10.1016/j.renene.2014.02.044.

[9] Asghar A, Nath A, Publishing SI. Prospects of Renewable Bioprocessing in Future Energy Systems. Springer International Publishing; 2020.

[10] Raj Singh A, Kumar Singh S, Jain S. A review on bioenergy and biofuel production. Mater Today Proc 2021. https://doi.org/10.1016/j.matpr.2021.03.212.

[11] Ambaye TG, Vaccari M, Bonilla-Petriciolet A, Prasad S, van Hullebusch ED, Rtimi S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. J Environ Manage 2021;290:112627. https://doi.org/10.1016/j.jenvman.2021.112627.

[12] Zhou A, Thomson E. The development of biofuels in Asia. Appl Energy 2009;86:S11–20. https://doi.org/10.1016/j.apenergy.2009.04.028.

[13] Løkke S, Aramendia E, Malskær J. A review of public opinion on liquid biofuels in the EU: Current knowledge and future challenges. Biomass and Bioenergy 2021;150:106094. https://doi.org/10.1016/j.biombioe.2021.106094.

[14] Pinzi S, Leiva D, López-García I, Redel-Macías MD, Dorado MP. Latest trends in feedstocks for biodiesel production. Biofuels, Bioprod Biorefining 2014;8:126–43. https://doi.org/10.1002/bbb.1435.

[15] Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 2005. https://doi.org/10.1016/j.fuproc.2004.11.002.

[16] Ajala OE, Aberuagba F, Odetoye TE, Ajala AM. Biodiesel: Sustainable Energy Replacement to Petroleum-Based Diesel Fuel – A Review. ChemBioEng Rev 2015;2:145–56. https://doi.org/10.1002/cben.201400024.

[17] Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev 2013;18:211–45. https://doi.org/10.1016/j.rser.2012.10.013.

[18] Knothe G, Gerpen J Van, Krahl J. The Biodiesel Handbook. 2010. https://doi.org/10.1016/B978-1-893997-62-2.50015-2.

[19] Salvi BL, Panwar NL. Biodiesel resources and production technologies – A review. Renew Sustain Energy Rev 2012;16:3680–9. https://doi.org/http://dx.doi.org/10.1016/j.rser.2012.03.050.

[20] Thanh LT, Okitsu K, Boi L Van, Maeda Y. Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review. Catalysts 2012;2:191–222. https://doi.org/10.3390/catal2010191.

[21] Singh D, Sharma D, Soni SL, Sharma S, Kumari D. Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel 2019. https://doi.org/10.1016/j.fuel.2019.04.174.

[22] Timilsina GR, Shrestha A. How much hope should we have for biofuels? Energy 2011;36:2055–69. https://doi.org/10.1016/j.energy.2010.08.023.

[23] Kumar A, Sharma S. Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renew Sustain Energy Rev 2011;15:1791–800. https://doi.org/10.1016/j.rser.2010.11.020.

[24] Ajayebi A, Gnansounou E, Kenthorai Raman J. Comparative life cycle assessment of biodiesel from algae and jatropha: A case study of India. Bioresour Technol 2013;150:429–37. https://doi.org/10.1016/j.biortech.2013.09.118.

[25] Bajpai D, Tyagi VK. Biodiesel: Source, Production, Composition, Properties and its Benefits. J Oleo Sci 2006;55:487–502. https://doi.org/10.5650/jos.55.487.

[26] Ambat I, Srivastava V, Sillanpää M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renew Sustain Energy Rev 2018;90. https://doi.org/10.1016/j.rser.2018.03.069.

[27] Patil PD, Deng S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 2009;88:1302–6. https://doi.org/http://dx.doi.org/10.1016/j.fuel.2009.01.016.

[28] Chen Y-H, Chen J-H, Chang C-Y, Chang C-C. Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions. Bioresour Technol 2010;101:9521–6. https://doi.org/http://dx.doi.org/10.1016/j.biortech.2010.06.117.

[29] Amin A. Review of diesel production from renewable resources : Catalysis , process kinetics and technologies. Ain Shams Eng J 2019;10:821–39. https://doi.org/10.1016/j.asej.2019.08.001.

[30] Thangaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L. Catalysis in biodiesel production - A review. Clean Energy 2019;3:2–23. https://doi.org/10.1093/ce/zky020.

[31] Chouhan APS, Sarma AK. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renew Sustain Energy Rev 2011;15:4378–99. https://doi.org/10.1016/j.rser.2011.07.112.

[32] Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G. Current biodiesel production technologies: A comparative review. Energy Convers Manag 2012;63:138–48. https://doi.org/http://dx.doi.org/10.1016/j.enconman.2012.02.027.

[33] Banković-Ilić IB, Stamenković OS, Veljković VB. Biodiesel production from non-edible plant oils. Renew Sustain Energy Rev 2012;16:3621–47. https://doi.org/http://dx.doi.org/10.1016/j.rser.2012.03.002.

[34] Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 2011;37:52–68. https://doi.org/10.1016/j.pecs.2010.01.003.

[35] Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy 2010;87:1083–95. https://doi.org/10.1016/j.apenergy.2009.10.006.

[36] Sherbiny SA El, Refaat AA, Sheltawy ST El. Production of biodiesel using the microwave technique. J Adv Res 2010;1:309–14. https://doi.org/https://doi.org/10.1016/j.jare.2010.07.003.

[37] Bdulkadir BAA, Emura YU, Amli AR, Sman NBO, Usakabe KK, Ai TK. Production of Biodiesel from Rubber Seeds ( Hevea Brasiliensis ) by In situ Transesterification Method 2015:763–8.

[38] Tuntiwiwattanapun N, Monono E, Wiesenborn D, Tongcumpou C. In-situ transesterification process for biodiesel production using spent coffee grounds from the instant coffee industry. Ind Crops Prod 2017;102:23–31. https://doi.org/10.1016/j.indcrop.2017.03.019.

[39] Sarin A. Biodiesel: production and properties. Royal Society of Chemistry; 2012.

[40] Maeda Y, Thanh LT, Imamura K, Izutani K, Okitsu K, Boi L Van, et al. New technology for the production of biodiesel fuel. Green Chem 2011;13:1124–8. https://doi.org/10.1039/c1gc15049a.

[41] Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. A new co-solvent method for the green production of biodiesel fuel - Optimization and practical application. Fuel 2013;103:742–8. https://doi.org/10.1016/j.fuel.2012.09.029.

[42] Luu PD, Truong HT, Luu B Van, Pham LN, Imamura K, Takenaka N, et al. Production of biodiesel from Vietnamese Jatropha curcas oil by a co-solvent method. Bioresour Technol 2014;173:309–16. https://doi.org/10.1016/j.biortech.2014.09.114.

[43] Saluja RK, Kumar V, Sham R. Stability of biodiesel – A review. Renew Sustain Energy Rev 2016;62. https://doi.org/10.1016/j.rser.2016.05.001.

[44] Kumar N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 2017. https://doi.org/10.1016/j.fuel.2016.11.001.

[45] Christensen E, McCormick RL. Long-term storage stability of biodiesel and biodiesel blends. Fuel Process Technol 2014;128:339–48. https://doi.org/10.1016/j.fuproc.2014.07.045.

[46] Sia CB, Kansedo J, Tan YH, Lee KT. Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatal Agric Biotechnol 2020;24:101514. https://doi.org/10.1016/j.bcab.2020.101514.

[47] Kleinberg MN, Rios MAS, Buarque HLB, Parente MM V., Cavalcante CL, Luna FMT. Influence of Synthetic and Natural Antioxidants on the Oxidation Stability of Beef Tallow Before Biodiesel Production. Waste and Biomass Valorization 2019;10:797–803. https://doi.org/10.1007/s12649-017-0120-x.

[48] de Freitas ON, Cardoso Rial R, Fontoura Cavalheiro L, dos Santos Barbosa JM, Domingues Nazário CE, Viana LH. Evaluation of the oxidative stability and cold filter plugging point of soybean methyl biodiesel/bovine tallow methyl biodiesel blends. Ind Crops Prod 2019;140:111667. https://doi.org/10.1016/j.indcrop.2019.111667.

[49] Steinbach A. A Comprehensive Analysis of Biodiesel. Biodiesel Mag 2007.

[50] Kivevele T, Huan Z. Review of the stability of biodiesel produced from less common vegetable oils of African origin. South Africa J Sci 2015;111. https://doi.org/10.17159/sajs.2015/20140434.

[51] Helwani Z, Othman MR, Aziz N, Fernando WJN, Kim J. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process Technol 2009;90:1502–14. https://doi.org/10.1016/j.fuproc.2009.07.016.

[52] Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process Technol 2007. https://doi.org/10.1016/j.fuproc.2007.01.005.

[53] Lin C-Y, Chiu C-C. Effects of Oxidation during Long-term Storage on the Fuel Properties of Palm Oil-based Biodiesel n.d. https://doi.org/10.1021/ef900105t.

[54] Christensen ED, Alleman T, McCormick RL. Re-additization of commercial biodiesel blends during long-term storage. Fuel Process Technol 2018;177:56–65. https://doi.org/10.1016/j.fuproc.2018.04.011.

[55] Yang J, He QS, Corscadden K, Caldwell C. Improvement on oxidation and storage stability of biodiesel derived from an emerging feedstock camelina. Fuel Process Technol 2017;157. https://doi.org/10.1016/j.fuproc.2016.12.005.

[56] Knothe G, Razon LF. Biodiesel fuels. Prog Energy Combust Sci 2017. https://doi.org/10.1016/j.pecs.2016.08.001.

[57] Pullen J, Saeed K. An overview of biodiesel oxidation stability. Renew Sustain Energy Rev 2012;16:5924–50. https://doi.org/10.1016/j.rser.2012.06.024.

[58] Knothe G, Steidley KR. Kinematic viscosity of biodiesel fuel components and related compounds . Influence of compound structure and comparison to petrodiesel fuel components 2005;84:1059–65. https://doi.org/10.1016/j.fuel.2005.01.016.

[59] Bouaid A, Martinez M, Aracil J. Long storage stability of biodiesel from vegetable and used frying oils. Fuel 2007;86:2596–602. https://doi.org/10.1016/j.fuel.2007.02.014.

[60] Odueke OB, Farag KW, Baines RN, Chadd SA. Irradiation Applications in Dairy Products: a Review. Food Bioprocess Technol 2016;9:751–67. https://doi.org/10.1007/s11947-016- 1709-y.

[61] Anwar MM, Ali SE, Nasr EH. Improving the nutritional value of canola seed by gamma irradiation. J Radiat Res Appl Sci 2015;8:328–33. https://doi.org/10.1016/j.jrras.2015.05.007.

[62] Afify AMR, Rashed MM, Ebtesam AM, El-Beltagi HS. Effect of gamma radiation on the lipid profiles of soybean, peanut and sesame seed oils. Grasas y Aceites 2013;64:356–68. https://doi.org/10.3989/gya.119712.

[63] Al-Bachir M. Fatty Acid Contents of Gamma Irradiated Sesame (Sesamumindicum L.) Peanut (Arachishypogaea L.) and Sunflower (Helianthus annuus L.) Seeds. J Food Chem Nanotechnol 2017;03:31–7. https://doi.org/10.17756/jfcn.2017-034.

[64] Hong SI, Kim JY, Cho SY, Park HJ. The effect of gamma irradiation on oleic acid in methyl oleate and food. Food Chem 2010;121:93–7. https://doi.org/10.1016/j.foodchem.2009.12.008.

[65] Miyahara M, Saito A, Kamimura T, Nagasawa T, Ito H, Toyoda M. Hydrocarbon Productions in Hexane Solutions of Fatty Acid Methyl Esters Irradiated with Gamma Rays. J Heal Sci 2002;48:418–26. https://doi.org/10.1248/jhs.48.418.

[66] Iijima M, Yamashita K, Hirooka Y, Ueda Y, Yamane K, Kamimura C. Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress 2020. https://doi.org/10.1080/1343943X.2020.1725391.

[67] Mitsuhiro Hirai, Ajito S, Takahashi K, Iwasa T, Li X, Wen D, et al. Structure of Ultrafine Bubbles and Their Effects on Protein and Lipid Membrane Structures Studied by Smalland Wide-Angle X-ray Scattering. J Phys Chem B 2019;123:3421–9. https://doi.org/https://doi.org/10.1021/acs.jpcb.9b00837.

[68] Yasui K, Tuziuti T, Kanematsu W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrason Sonochem 2018;48:259–66. https://doi.org/10.1016/j.ultsonch.2018.05.038.

[69] Ferraro G, Jadhav AJ, Barigou M. A Henry’s law method for generating bulk nanobubbles † 2020;12:15869. https://doi.org/10.1039/d0nr03332d.

[70] Takahashi M, Chiba K, Li P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. Physic Chem B 2007;111:1343–50. https://doi.org/https://doi.org/10.1021/jp0669254.

[71] Azevedo A, Etchepare R, Calgaroto S, Rubio J. Aqueous dispersions of nanobubbles: Generation, properties and features. Miner Eng 2016;94:29–37. https://doi.org/10.1016/j.mineng.2016.05.001.

[72] Favvas EP, Kyzas GZ, Efthimiadou EK, Mitropoulos AC. Bulk nanobubbles, generation methods and potential applications. Curr Opin Colloid Interface Sci 2021;54:101455. https://doi.org/10.1016/J.COCIS.2021.101455.

Chapter2

[1] Encinar JM, Pardal A, Sánchez N. An improvement to the transesterification process by the use of co-solvents to produce biodiesel. Fuel 2016;166:51–8. https://doi.org/10.1016/j.fuel.2015.10.110.

[2] Singh D, Sharma D, Soni SL, Sharma S, Kumar Sharma P, Jhalani A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020;262:116553. https://doi.org/10.1016/j.fuel.2019.116553.

[3] Unglert M, Bockey D, Bofinger C, Buchholz B, Fisch G, Luther R, et al. Action areas and the need for research in biofuels. Fuel 2020;268. https://doi.org/10.1016/j.fuel.2020.117227.

[4] Wayne, Joshua C, David, Matthew G, Scott, Alexander M, Hutchinson G, And, IV W. A Comparative Analysis of Biodiesel and Diesel Emissions. Worcester Polytecnic Inst 2010:1– 128.

[5] Bajpai D, Tyagi VK. Biodiesel: Source, Production, Composition, Properties and its Benefits. J Oleo Sci 2006;55:487–502. https://doi.org/10.5650/jos.55.487.

[6] SPECIFICATION FOR BIODIESEL (B100) – ASTM D6751-07b 2007.

[7] Thanh LT, Okitsu K, Boi L Van, Maeda Y. Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review. Catalysts 2012;2:191–222. https://doi.org/10.3390/catal2010191.

[8] Singh D, Sharma D, Soni SL, Sharma S, Kumari D. Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel 2019. https://doi.org/10.1016/j.fuel.2019.04.174.

[9] Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 2005. https://doi.org/10.1016/j.fuproc.2004.11.002.

[10] Fadhil AB, Al-Tikrity ETB, Albadree MA. Biodiesel production from mixed non-edible oils, castor seed oil and waste fish oil. Fuel 2017;210. https://doi.org/10.1016/j.fuel.2017.09.009.

[11] Casas A, Fernández CM, Ramos MJ, Pérez Á, Rodríguez JF. Optimization of the reaction parameters for fast pseudo single-phase transesterification of sunflower oil. Fuel 2010;89:650–8. https://doi.org/https://doi.org/10.1016/j.fuel.2009.08.004.

[12] Le HNT, Imamura K, Watanabe N, Furuta M, Takenaka N, Boi L V, et al. Biodiesel production from rubber seed oil using a new co-solvent of fatty acid methyl esters converted from contaminants of the oil. Energy Technol 2017.

[13] Luu PD, Truong HT, Luu B Van, Pham LN, Imamura K, Takenaka N, et al. Production of biodiesel from Vietnamese Jatropha curcas oil by a co-solvent method. Bioresour Technol 2014;173:309–16. https://doi.org/10.1016/j.biortech.2014.09.114.

[14] Chang CC, Teng S, Yuan MH, Ji DR, Chang CY, Chen YH, et al. Esterification of jatropha oil with isopropanol via ultrasonic irradiation. Energies 2018;11. https://doi.org/10.3390/en11061456.

[15] Pham LN, Van Luu B, Phuoc HD, Le HNT, Truong HT, Duc Luu P, et al. Production of biodiesel from candlenut oil using a two-step co-solvent method and evaluation of its gaseous emissions. J Oleo Sci 2018;67:1–2. https://doi.org/10.5650/jos.ess17220.

[16] Bdulkadir BAA, Emura YU, Amli AR, Sman NBO, Usakabe KK, Ai TK. Production of Biodiesel from Rubber Seeds ( Hevea Brasiliensis ) by In situ Transesterification Method 2015:763–8.

[17] Montcho PS, Konfo T. R. C, Agbangnan D. C. P, Sidouhounde A, Sohounhloue C. K. D. Comparative Study of Transesterification Processes for Biodiesel Production (A Review). Elixir Appl Chem 2018;120:51235–42.

[18] Mohiddin MN Bin, Tan YH, Seow YX, Kansedo J, Mubarak NM, Abdullah MO, et al. Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. J Ind Eng Chem 2021. https://doi.org/10.1016/j.jiec.2021.03.036.

[19] Chueluecha N, Kaewchada A, Jaree A. Enhancement of biodiesel synthesis using co-solvent in a packed-microchannel. J Ind Eng Chem 2017;51:162–71. https://doi.org/https://doi.org/10.1016/j.jiec.2017.02.028.

[20] Roschat W, Siritanon T, Kaewpuang T, Yoosuk B, Promarak V. Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresour Technol 2016;209:343–50. https://doi.org/10.1016/j.biortech.2016.03.038.

[21] Chinh Nguyen H, Pan J-W, Su | Chia-Hung, Hwai |, Ong C, Chern J-M, et al. Sol-gel synthesized lithium orthosilicate as a reusable solid catalyst for biodiesel production. Int J Energy Res 2021;45:6239–49. https://doi.org/10.1002/er.6246.

[22] Jamil F, Al-Riyami M, Al-Haj L, Ala’ |, Al-Muhtaseb H, Myo |, et al. Waste Balanites aegyptiaca seed oil as a potential source for biodiesel production in the presence of a novel mixed metallic oxide catalyst 2020. https://doi.org/10.1002/er.5609.

[23] Farooq M, Ramli A, Naeem | Abdul, Noman | Muhammad, Liaqat |, Shah A, et al. A green route for biodiesel production from waste cooking oil over base heterogeneous catalyst 2019. https://doi.org/10.1002/er.4646.

[24] de Pietre MK, Almeida LCP, Landers R, Vinhas RCG, Luna FJ. H3PO4- and H2SO4-treated niobic acid as heterogeneous catalyst for methyl ester production. React Kinet Mech Catal 2010;99:269–80. https://doi.org/10.1007/s11144-009-0143-9.

[25] Garcia CM, Teixeira S, Marciniuk LL, Schuchardt U. Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresour Technol 2008;99:6608–13. https://doi.org/https://doi.org/10.1016/j.biortech.2007.09.092.

[26] Thangaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L. Catalysis in biodiesel production - A review. Clean Energy 2019;3:2–23. https://doi.org/10.1093/ce/zky020.

[27] Cavalcante FTT, Neto FS, Rafael de Aguiar Falcão I, Erick da Silva Souza J, de Moura Junior LS, da Silva Sousa P, et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021;288:119577. https://doi.org/10.1016/J.FUEL.2020.119577.

[28] Velusamy K, Devanand J, Senthil Kumar P, Soundarajan K, Sivasubramanian V, Sindhu J, et al. A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel 2021;306:121632. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121632.

[29] Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. A new co-solvent method for the green production of biodiesel fuel - Optimization and practical application. Fuel 2013;103:742–8. https://doi.org/10.1016/j.fuel.2012.09.029.

[30] Sharma YC, Singh B, Korstad J. High Yield and Conversion of Biodiesel from a Nonedible Feedstock (Pongamia pinnata). J Agric Food Chem 2010;58:242–7. https://doi.org/10.1021/jf903227e.

[31] Georgogianni KG, Kontominas MG, Pomonis PJ, Avlonitis D, Gergis V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process Technol 2008;89:503–9. https://doi.org/10.1016/j.fuproc.2007.10.004.

[32] Stavarache C, Vinatoru M, Maeda Y, Bandow H. Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason Sonochem 2007;14:413–7. https://doi.org/10.1016/j.ultsonch.2006.09.014.

[33] Zhao Z, Xue Y, Xu G, Chen D, Zhou J, Liu P, et al. Reaction conditions of ultrasound-assisted production of biodiesel: A review. Int J Energy Res 2017;41:1081–95. https://doi.org/https://doi.org/10.1002/er.3673.

[34] Osmieri L, Alipour Moghadam Esfahani R, Recasens F. Continuous biodiesel production in supercritical two-step process: phase equilibrium and process design. J Supercrit Fluids 2017;124:57–71. https://doi.org/https://doi.org/10.1016/j.supflu.2017.01.010.

[35] Encinar JM, Pardal A, Martínez G. Transesterification of rapeseed oil in subcritical methanol conditions. Fuel Process Technol 2012;94:40–6. https://doi.org/https://doi.org/10.1016/j.fuproc.2011.10.018.

[36] Ma F, Clements LD, Hanna MA. Biodiesel fuel from animal fat. Ancillary studies on transesterification of beef tallow. Ind Eng Chem Res 1998;37:3768–71. https://doi.org/10.1021/ie980162s.

[37] Simonelli G, Júnior JMF, Pires CA de M, Santos LCL dos. Biodiesel production using co-solvents: a review. Res Soc Dev 2020;9:1–27. https://doi.org/DOI: http://dx.doi.org/10.33448/rsdv9i1.1672.

[38] Maeda Y, Thanh LT, Imamura K, Izutani K, Okitsu K, Boi L Van, et al. New technology for the production of biodiesel fuel. Green Chem 2011;13:1124–8. https://doi.org/10.1039/c1gc15049a.

[39] Le HNT, Imamura K, Furuta M, Van Boi L, Maeda Y. Production of biodiesel from Vernicia Montana Lour. Oil using a co-solvent method and the subsequent evaluation of its stability during storage. Green Process Synth 2018;7:170–9. https://doi.org/10.1515/gps-2016-0215.

[40] Luu PD, Takenaka N, Van Luu B, Pham LN, Imamura K, Maeda Y. Co-solvent method produce biodiesel form waste cooking oil with small pilot plant. Energy Procedia 2014;61:2822–32. https://doi.org/10.1016/j.egypro.2014.12.303.

[41] Le HNT, Imamura K, Watanabe N, Furuta M, Takenaka N, Boi L Van, et al. Biodiesel Production from Rubber Seed Oil by Transesterification Using a Co-solvent of Fatty Acid Methyl Esters. Chem Eng Technol 2018;41:1013–8. https://doi.org/10.1002/ceat.201700575.

[42] Nguyen Huynh Phuong U, Pham Thi Phuong T, Asada R, Imamura K, Kitaya Y, Furuta M, et al. A new method for production of green biodiesel fuel using FAME as a co-solvent 2020:1–7. https://doi.org/https://doi.org/10.11450/seitaikogaku.32.61.

[43] Assaad HI, Hou Y, Zhou L, Carroll RJ, Wu G. Rapid publication-ready MS-Word tables for twoway ANOVA. Springerplus 2015;4:33. https://doi.org/10.1186/s40064-015-0795-z.

[44] Motasemi F, Ani FN. A review on microwave-assisted production of biodiesel. Renew Sustain Energy Rev 2012. https://doi.org/10.1016/j.rser.2012.03.069.

[45] Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour Technol 2010;101:639–45. https://doi.org/10.1016/j.biortech.2009.08.050.

[46] Deshmane VG, Gogate PR, Pandit AB. Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate. Ultrason Sonochem 2009;16:345–50. https://doi.org/10.1016/j.ultsonch.2008.09.004.

[47] Lee I, Johnson LA, Hammond EG. Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J Am Oil Chem Soc 1995;72:1155–60. https://doi.org/10.1007/BF02540982.

[48] Kongmany S, Truong HT, Hanh LTN, Matsuura H, Furuta M, Okuda S, et al. Photodegradation of 12-deoxy-13,16-dioxy phorbol esters in aqueous solution under UV light and natural sunlight. J Environ Chem Eng 2017. https://doi.org/10.1016/j.jece.2017.11.006.

[49] Truong Thi H. Utilization of Oil-Rich Biomass for the Production of Biodiesel Fuel and Exploration of the Multi-Beneficial Components. 2018.

[50] Wu L, Huang K, Wei T, Lin Z, Zou Y, Tong Z. Process intensification of NaOH-catalyzed transesterification for biodiesel production by the use of bentonite and co-solvent (diethyl ether). Fuel 2016;186:597–604. https://doi.org/https://doi.org/10.1016/j.fuel.2016.08.106.

Chapter3

[1] Saluja RK, Kumar V, Sham R. Stability of biodiesel – A review. Renew Sustain Energy Rev 2016;62. https://doi.org/10.1016/j.rser.2016.05.001.

[2] Montcho PS, Konfo T. R. C, Agbangnan D. C. P, Sidouhounde A, Sohounhloue C. K. D. Comparative Study of Transesterification Processes for Biodiesel Production (A Review). Elixir Appl Chem 2018;120:51235–42.

[3] Singh D, Sharma D, Soni SL, Sharma S, Kumar Sharma P, Jhalani A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020;262:116553. https://doi.org/10.1016/j.fuel.2019.116553.

[4] Dyer JM, Tang F, Chapital DC, Lax AR, Shepherd HS, Shih DS, et al. Differential extraction of eleostearic acid-rich lipid-protein complexes in tung seeds. JAOCS, J Am Oil Chem Soc 1998;75:1687–90. https://doi.org/10.1007/s11746-998-0113-9.

[5] Murawski A. α-Eleostearic Acid Extraction by Saponification of Tung Oil and Its Subsequent Polymerization 2017.

[6] Le HNT, Imamura K, Watanabe N, Furuta M, Takenaka N, Boi L Van, et al. Biodiesel Production from Rubber Seed Oil by Transesterification Using a Co-solvent of Fatty Acid Methyl Esters. Chem Eng Technol 2018;41:1013–8. https://doi.org/10.1002/ceat.201700575.

[7] Hong SI, Kim JY, Cho SY, Park HJ. The effect of gamma irradiation on oleic acid in methyl oleate and food. Food Chem 2010;121:93–7. https://doi.org/10.1016/j.foodchem.2009.12.008.

[8] Anwar MM, Ali SE, Nasr EH. Improving the nutritional value of canola seed by gamma irradiation. J Radiat Res Appl Sci 2015;8:328–33. https://doi.org/10.1016/j.jrras.2015.05.007.

[9] Vasile C, Butnaru E. Radiation Chemistry of Organic Solids. Appl Ioniz Radiat Mater Process 2017:117–41.

[10] Al-Bachir M. Fatty Acid Contents of Gamma Irradiated Sesame (Sesamumindicum L.) Peanut (Arachishypogaea L.) and Sunflower (Helianthus annuus L.) Seeds. J Food Chem Nanotechnol 2017;3:31–7.

[11] Afify AMR, Rashed MM, Ebtesam AM, El-Beltagi HS. Effect of gamma radiation on the lipid profiles of soybean, peanut and sesame seed oils. Grasas y Aceites 2013;64:356–68. https://doi.org/10.3989/gya.119712.

[12] Miyahara M, Saito A, Kamimura T, Nagasawa T, Ito H, Toyoda M. Hydrocarbon Productions in Hexane Solutions of Fatty Acid Methyl Esters Irradiated with Gamma Rays. J Heal Sci 2002;48:418–26. https://doi.org/10.1248/jhs.48.418.

[13] Le HNT, Imamura K, Furuta M, Van Boi L, Maeda Y. Production of biodiesel from Vernicia Montana Lour. Oil using a co-solvent method and the subsequent evaluation of its stability during storage. Green Process Synth 2018;7:170–9. https://doi.org/10.1515/gps-2016-0215.

[14] Luan LQ, Hien NQ, Nagasawa N, Kume T, Yoshii F, Nakanishi TM. Biological effect of radiation-degraded alginate on flower plants in tissue culture. vol. 38. 2003. https://doi.org/10.1042/BA20030058.

[15] Quang Luan L, Thi Thu Ha V, Huynh Phuong Uyen N, Thi Thuy Trang L, Quoc Hien N, Trai N, et al. Preparation of Oligoalginate Plant Growth Promoter by γ Irradiation of Alginate Solution Containing Hydrogen Peroxide 2012. https://doi.org/10.1021/jf204469p.

[16] Attri P, Kim M, Sarinont T, Choi EH, Seo H, Cho AE, et al. The protective action of osmolytes on the deleterious effects of gamma rays and atmospheric pressure plasma on protein conformational changes OPEN. Nat - Sci Reports 2017;7. https://doi.org/10.1038/s41598-017-08643-1.

[17] Xuetong F. Radiation chemistry of food components. Food Irradiat. Res. Technol. Second Ed., Wiley Online Library; 2012, p. 75–97.

[18] Buxton G V, Greenstock CL, Helman WP, Ross AB, Buxton G V, Greenstock CL, et al. Critical Review of rate constants for reactions of hydrated electrons , hydrogen atoms and hydroxyl radicals ( ⋅ OH / ⋅ O in Aqueous Solution. J Phys Chem Ref Data 1988;17:513– 886. https://doi.org/10.1063/1.555805.

[19] Seki H, Imamura M. Radiolysis yields from .gamma.-irradiated liquid methanol containing nitrous oxide and the effect of acid _ Enhanced Reader.pdf. Phys Chem 1967;71:870–4.

[20] Luo YR. Comprehensive Handbook of Chemical Bond Energies. CRC Press, Boca Raton, FL; 2007.

[21] Getoff N. Factors influencing the efficiency of radiation-induced degradation of water pollutants. Radiat Phys Chem 2002;65:437–46. https://doi.org/10.1016/S0969- 806X(02)00342-0.

Chapter4

[1] Rial RC, de Freitas ON, Santos G dos, Nazário CED, Viana LH. Evaluation of the oxidative and thermal stability of soybean methyl biodiesel with additions of dichloromethane extract ginger (Zingiber officinale Roscoe). Renew Energy 2019;143:295–300. https://doi.org/10.1016/j.renene.2019.04.164.

[2] Godri Pollitt KJ, Chhan D, Rais K, Pan K, Wallace JS. Biodiesel fuels: A greener diesel? A review from a health perspective. Sci Total Environ 2019. https://doi.org/10.1016/j.scitotenv.2019.06.002.

[3] Da Silva WLG, Salomão AA, Vila MMDC, Tubino M. Influence of water and ultraviolet irradiation on the induction period of the oxidation of biodiesel. J Braz Chem Soc 2017;28:676–80. https://doi.org/10.5935/0103-5053.20160202.

[4] Kivevele T, Huan Z. Review of the stability of biodiesel produced from less common vegetable oils of African origin. South Africa J Sci 2015;111. https://doi.org/10.17159/sajs.2015/20140434.

[5] Christensen ED, Alleman T, McCormick RL. Re-additization of commercial biodiesel blends during long-term storage. Fuel Process Technol 2018;177:56–65. https://doi.org/10.1016/j.fuproc.2018.04.011.

[6] Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process Technol 2007. https://doi.org/10.1016/j.fuproc.2007.01.005.

[7] Bouaid A, Martinez M, Aracil J. Long storage stability of biodiesel from vegetable and used frying oils. Fuel 2007;86:2596–602. https://doi.org/10.1016/j.fuel.2007.02.014.

[8] Saluja RK, Kumar V, Sham R. Stability of biodiesel – A review. Renew Sustain Energy Rev 2016;62. https://doi.org/10.1016/j.rser.2016.05.001.

[9] Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev 2013;18:211–45. https://doi.org/10.1016/j.rser.2012.10.013.

[10] Kumar A, Sharma S. Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renew Sustain Energy Rev 2011;15:1791–800. https://doi.org/10.1016/j.rser.2010.11.020.

[11] Yiu H. Hui, Castell-Perez E, Cunha LM, Guerrero-Legaretta I. Handbook of Food Science, Technology, and Engineering. CRC Press Taylor & Francis Group; 2006.

[12] Ariaansz RF. Hydrogeneration in Practice n.d.:AOCS Lipid Library. https://lipidlibrary.aocs.org/edible-oil-processing/hydrogenation-in-practice.

[13] Gupta MK. Hydrogenation. Pract. Guid. to Veg. Oil Process., Elsevier; 2017, p. 171–215. https://doi.org/10.1016/B978-1-63067-050-4.00007-6.

[14] Trans Fatty Acids And Hydrogenated Vegetable Oils 2009:Food Safety Authority of Ireland. https://www.fsai.ie/faq/trans_fatty_acids.html#:~:text=Oils (such as vegetable%2C olive,solid%2C or “spreadable”.&text=The use of hydrogenated helps,food and maintain flavour stability.

[15] Iijima M, Yamashita K, Hirooka Y, Ueda Y, Yamane K, Kamimura C. Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress 2020. https://doi.org/10.1080/1343943X.2020.1725391.

[16] Mitsuhiro Hirai, Ajito S, Takahashi K, Iwasa T, Li X, Wen D, et al. Structure of Ultrafine Bubbles and Their Effects on Protein and Lipid Membrane Structures Studied by Smalland Wide-Angle X-ray Scattering. J Phys Chem B 2019;123:3421–9. https://doi.org/https://doi.org/10.1021/acs.jpcb.9b00837.

[17] Yasui K, Tuziuti T, Kanematsu W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrason Sonochem 2018;48:259–66. https://doi.org/10.1016/j.ultsonch.2018.05.038.

[18] Azevedo A, Etchepare R, Calgaroto S, Rubio J. Aqueous dispersions of nanobubbles: Generation, properties and features. Miner Eng 2016;94:29–37. https://doi.org/10.1016/j.mineng.2016.05.001.

[19] Dang T, Kawagishi H, Fujii Y, Okitsu K, Maeda Y, Takenaka N. Development of a Photometric Method to Measure Molecular Oxygen in Water. Anal Sci 2021;37:839–44. https://doi.org/10.2116/analsci.20P316.

[20] Nakatake Y, Yamashita H, Tanaka H, Goto H, Suzuki T. Reduction of fuel consumption of a small-scale gas turbine engine with fine bubble fuel. Energy 2020;194:116822. https://doi.org/10.1016/j.energy.2019.116822.

[21] Nakatake Y, Kisu S, Shigyo K, Eguchi T, Watanabe T. Effect of nano air-bubbles mixed into gas oil on common-rail diesel engine. Energy 2013;59:233–9. https://doi.org/10.1016/j.energy.2013.06.065.

[22] Luu PD, Takenaka N, Van Luu B, Pham LN, Imamura K, Maeda Y. Co-solvent method produce biodiesel form waste cooking oil with small pilot plant. Energy Procedia 2014;61:2822–32. https://doi.org/10.1016/j.egypro.2014.12.303.

[23] Le HNT, Imamura K, Furuta M, Van Boi L, Maeda Y. Production of biodiesel from Vernicia Montana Lour. Oil using a co-solvent method and the subsequent evaluation of its stability during storage. Green Process Synth 2018;7:170–9. https://doi.org/10.1515/gps-2016-0215.

[24] Rodrigues JS, do Valle CP, Uchoa AFJ, Ramos DM, da Ponte FAF, Rios MA de S, et al. Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renew Energy 2020;156:1100–6. https://doi.org/10.1016/j.renene.2020.04.153.

[25] Yang J, He QS, Corscadden K, Caldwell C. Improvement on oxidation and storage stability of biodiesel derived from an emerging feedstock camelina. Fuel Process Technol 2017;157. https://doi.org/10.1016/j.fuproc.2016.12.005.

[26] Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour Technol 2010;101:639–45. https://doi.org/10.1016/j.biortech.2009.08.050.

[27] Steinbach A. A Comprehensive Analysis of Biodiesel. Biodiesel Mag 2007.

[28] Test L. Determination of Iodine Value 1 , 2 2013.

[29] Chebet J, Kinyanjui T, Cheplogoi PK. Impact of frying on iodine value of vegetable oils before and after deep frying in different types of food in Kenya. J Sci Innov Res 2016;5:193–6.

[30] Avila Orozco FD, Sousa AC, Araujo MCU, Domini CE. A new flow UV–Vis kinetics spectrophotometric method based on a photodegradative reaction for determining the oxidative stability of biodiesel. Fuel 2020;262:116197. https://doi.org/10.1016/j.fuel.2019.116197.

[31] Rashed MM, Kalam MA, Masjuki HH, Rashedul HK, Ashraful AM, Shancita I, et al. Stability of biodiesel, its improvement and the effect of antioxidant treated blends on engine performance and emission. RSC Adv 2013;1:1–100.

[32] Furlan PY, Wetzel P, Johnson S, Wedin J, Och A. Investigating the oxidation of biodiesel from used vegetable oil by FTIR spectroscopy: Used vegetable oil biodiesel oxidation study by FTIR. Spectrosc Lett 2010;43:580–5. https://doi.org/10.1080/00387010.2010.510708.

[33] Szymanski HA, Yelin RE. NMR Band Handbook. 1968.

[34] Kumar D, Singh B. Effect of winterization and plant phenolic-additives on the cold-flow properties and oxidative stability of Karanja biodiesel. Fuel 2020;262:116631. https://doi.org/10.1016/j.fuel.2019.116631.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る