リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「努力度に基づく筋出力の制御に影響を及ぼす原因」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

努力度に基づく筋出力の制御に影響を及ぼす原因

宮本, 健史 筑波大学 DOI:10.15068/0002002682

2022.02.10

概要

⽇常⽣活またはスポーツ場⾯において合⽬的的に運動を遂⾏するとき,最⼤努⼒で筋出⼒を発揮することは少なく,むしろ最⼤下での適切な筋出⼒の制御を求められる場⾯が多い.実際,⽇常⽣活における筋電位(EMG 活動: electromyography)を評価した研究では,⽇常⽣活運動の多くが最⼤筋⼒に対して 20%(20%MVC: maximum voluntary contraction)程度の強度で⾏われることが明らかにされている (Kern et al., 2001).随意的な筋出⼒の制御では,発揮する筋出⼒の⼤きさは個⼈の努⼒度によって⾒積もられるが (Thompson et al., 1990),⾃⼰が発揮する筋出⼒に関する外的なフィードバックが与えられず,努⼒度にのみ基づいて筋出⼒を発揮する場合,努⼒度と筋出⼒との間には誤差が⽣じることが明らかになっている (Cooper et al., 1979; Seki and Ohtsuki, 1990; Wiktorin et al., 1996).つまり,筋出⼒の制御においては⾃⼰が意図する筋出⼒(ねらい)と発揮される筋出⼒(実際)は必ずしも⼀致しない.この努⼒度と筋出⼒との関係は,対象者の筋出⼒に関する主観的なスケールと客観的なスケールとの関係を⽰しており,両者が⼀致しているほど,⾃⼰が意図した通りに筋出⼒を制御できていることを⽰す.このことから,努⼒度と筋出⼒との関係は筋出⼒の制御における巧緻性の指標として⽤いられている.これまでに,加齢や神経疾患によって努⼒度と筋出⼒との関係が変化することが報告されており,若齢者や健常者と⽐較して,⾼齢者 (De Serres and Fang, 2004; Pincivero, 2011)や慢性期脳卒中患者 (Hampton et al., 2014; Yen and Li, 2015)では,努⼒度と筋出⼒との誤差が⼤きいことが明らかになっている.他⽅で,努⼒度と筋出⼒との関係に影響を及ぼす要因に関しては⼗分な検討が⾏われていない.筋出⼒の制御は⽇常⽣活運動の実⾏だけでなく,スポーツ場⾯で⾒られる巧みな運動制御とも深く関連することから,努⼒度と筋出⼒との関係に影響を及ぼす要因を解明することは,運動制御に関する重要な課題であると考えられる.

本邦においては,努⼒度に基づく筋出⼒の制御は“grading”と呼ばれ,運動を巧みに⾏う能⼒(調整⼒)を構成する要素の 1 つであると考えられている.猪飼 (1973)は神経,筋系の調整⼒を筋出⼒の発揮具合を調節する能⼒(grading),筋出⼒の程度を時間的に変化させる能⼒(timing),および筋出⼒の発揮の空間的配列を調節する能⼒(spacing)の 3 要素に分類しており,これらの要素が統合されることで巧みな運動が達成されると述べている.また,松浦 (1998)は巧みな筋出⼒の制御に関与する要素として,どの筋を(selecting),どの程度強く(grading),どの⽅向へ発揮するか(spacing),および筋収縮の時間的調節(timing または rhythm)を挙げている.さらに⼤築 (1988)は,運動の巧みさに関して,繊細な運動は運動の⽅向,速さ,および位置の変位の 3要素の⼤きさを意識的に段階分けすることで達成されるとし,これらの要素の制御は個々の関節運動に関与する筋出⼒の制御によって⾏われると述べている.これらを踏まえると,筋出⼒の制御は巧みな運動制御において重要な役割を担うことが考えられる.他⽅で,⽇常⽣活やスポーツ場⾯での運動では,個々の筋における筋出⼒の制御よりも,運動の速度やパワーなど,個々の筋活動の相互作⽤によって表出する運動のパフォーマンスが重要となる.この観点から,等尺性筋収縮だけではなく,垂直跳びの跳躍⾼ (宮本ほか, 2019, 2017; 定本・⼤築, 1977)や投運動のボール移動距離やボール速度 (伊藤・村⽊, 1997; 森本ほか, 2014)などを⽤いて,努⼒度と動的な運動のパフォーマンスとの関係も検討されている.動的な運動において重要となる速度は⼒積(⼒×作⽤時間)によって決定され,さらに⾝体やボールの移動距離は速度の積分によって決定されるため,動的な運動のパフォーマンスは筋出⼒の⼤⼩に関する制御だけでは説明できない.実際,定本・⼤築 (1977)は,最⼤下での垂直跳びの跳躍⾼の制御において,跳躍⾼と床反⼒との間には相関関係が認められないのに対し,跳躍前の沈み込み局⾯における加圧時間(体重以上の床反⼒が⽣じる局⾯の時間)や膝関節の屈曲⾓度は跳躍⾼と⾼い相関関係が認められることを明らかにしている.また,宮本ほか(2019)は,垂直跳びの跳躍⾼の制御課題と単純反応課題とを複合した条件においては,沈み込み局⾯における下肢の各関節⾓度や最⼤沈み込み距離などのキネマティクス的な要因の変化とともに,努⼒度と跳躍⾼との関係も変化することを報告している.つまり,動的な運動のパフォーマンスの制御は,個々の筋で発揮される出⼒の⼤⼩だけではなく,それらを空間的,時間的に組み合わせることで運動全体を変調させることによって⾏われると考えられる.他⽅で,⼤築は「ヒトの⾝体の⽣理学的最終出⼒は筋が発揮する⼒,つまり筋⼒である.(中略)したがって,動きの速さや,動きの結果である変位のコントロールは,脳を中⼼とする神経系の働きによって筋⼒を様々に組み合わせることで実現する.いわば筋⼒は,脳と動きをつなぐキーチェーンであり,筋⼒発揮性能の良否は動きの良否に⼤きな影響を与える.」と述べており,動的な運動においても筋出⼒の制御が重要であることを指摘している (⼤築ほか, 2017).これを受けて本博⼠論⽂では,あらゆる運動の基礎となる筋出⼒の制御に焦点を当て,努⼒度と筋出⼒との関係に影響を及ぼす要因を検証する.本博⼠論⽂で得られた知⾒は,これまで現象論のみの報告に留まっていた努⼒度と筋出⼒との関係に影響を及ぼす要因を解明することに寄与するだけでなく,動的な運動の巧緻性に関与する要因の検討やそれらを定量化する評価⽅法の構築における基礎的な知⾒を提供できると考えられる.

努⼒度と筋出⼒との関係に影響を及ぼしうる要因として,末梢からの求⼼性フィー ドバックの影響が指摘されている (Lampropoulou et al., 2012; Wallman and Sacco, 2007).求⼼性フィードバックとは⾝体各所に内在する受容器から得られる感覚情報を指し,⾃⼰の⾝体の動きや位置の知覚に寄与している (Matthews, 1988; Proske, 2005).特に⾃⼰の運動によって⽣じた求⼼性フィードバックは再求⼼性フィードバック(reafferent feedback)と呼ばれ,上位中枢で⽣成された運動指令と⽐較されることで,意図した運動と実際の運動との誤差を検出する役割を担っている (Lackner and DiZio, 2000; Nelson, 1996).また,⽬標物に向かって⼿をのばすリーチング運動などの細かい運動制御が求められる場合では,運動指令単独によって実⾏される feedforward 制御と,運動指令と再求⼼性フィードバックを統合することによって実⾏されるfeedback 制御とを組み合わせることによって⽬的となる運動が達成される (Desmurget and Grafton, 2000; Todorov, 2004).したがって,運動制御において再求⼼性フィードバックは重要な役割を担う.筋出⼒の制御においては,再求⼼性フィードバックは発揮した筋出⼒の⼤きさに関する感覚(⼒覚)を⽣成することに寄与していると考えられている (Luu et al., 2011).筋出⼒の発揮に関わる努⼒度は,運動指令に関与する⼤脳⽪質の活動によって⽣成されるが (Lafargue and Franck, 2009; Lafargue and Sirigu, 2006; Marcora, 2009; Proske and Gandevia, 2012),再求⼼性フィードバックによって⽣成される⼒覚は⼤脳⽪質で⽣成された努⼒度を変化させることが⽰唆されている (Brooks et al., 2013; Luu et al., 2011; Monjo and Forestier, 2018).例えば,腱に⻑時間振動刺激を与えることによって,⼒覚の⽣成に関与する筋紡錘の活動を低下させた研究では,振動刺激前と同等の筋出⼒を発揮した場合においても,対象者の努⼒度が変化することが報告されている (Monjo et al., 2018).他⽅で,再求⼼性フィードバックによる努⼒度の変化が筋出⼒の制御に及ぼす影響は明らかになっていない.努⼒度によって筋出⼒が制御されていることを考慮すると,筋出⼒の制御に対する再求⼼性フィードバックの関与の違いは努⼒度と筋出⼒との関係に影響を及ぼすことが推察される.

また,努⼒度と筋出⼒との関係に影響を及ぼしうる別の要因として,脊髄や筋による運動指令の促通作⽤が挙げられる.随意運動の主な経路である⽪質脊髄路では,運動指令は脊髄のα運動ニューロンを中継して筋に伝達される (Cheney and Fetz, 1980).したがって,筋出⼒の⼤きさは運動指令だけではなく,脊髄や筋の状態にも依存している.特に運動指令に対する脊髄のα運動ニューロンの⼊⼒−出⼒ゲインの変調は,発揮される筋出⼒の⼤きさを⼤幅に変化させることが明らかになっている (Lee and Heckman, 2000, 1996).他⽅で,α運動ニューロンの⼊⼒−出⼒ゲインの変調が筋出⼒の制御に及ぼす影響を検討した研究は⾒受けられない.上述の通り,努⼒度は運動指令に関与する⼤脳⽪質の活動によって⽣成されるが,α運動ニューロンの⼊⼒−出⼒ゲインの変調の⼀部は筋紡錘に由来する反射的な⼊⼒に依存しているため (Heckman et al., 2005, 2009),⼤脳⽪質の活動とは独⽴して筋出⼒の制御に関与している可能性がある.したがって,α運動ニューロンの⼊⼒−出⼒ゲインの変化は努⼒度と筋出⼒との関係に影響を及ぼすことが推察される.

以上をまとめると,努⼒度と筋出⼒との関係に影響を及ぼす要因として,再求⼼性フィードバックに代表される努⼒度を変化させる要因と脊髄のα運動ニューロンの興奮性レベルに代表される運動指令に対する筋の応答を変化させる要因の 2 つが挙げられるが,いずれも筋出⼒の制御に及ぼす影響は明らかになっていない.したがって,本博⼠論⽂ではこの 2 点の検証を⾏うことで,努⼒度と筋出⼒との関係に影響を及ぼす要因を解明する.

参考文献

【英⽂】

Adamo DE, Scotland S, Martin BJ (2012) Asymmetry in grasp force matching and sense of effort. Exp Brain Res 217:273–285.

Allen DG, Lee JA, Westerblad H (1989) Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis. J Physiol 415:433–458.

Allman BL, Rice CL (2003) Perceived exertion is elevated in old age during an isometric fatigue task. Eur J Appl Physiol 89:191–197.

Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE, Zilles K (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4:216–222.

Aniss AM, Gandevia SC, Milne RJ (1988) Changes in perceived heaviness and motor commands produced by cutaneous reflexes in man. J Physiol 397:113–126.

Baldissera F, Pierrot-Deseilligny E (1989) Facilitation of transmission in the pathway of non-monosynaptic Ia excitation to wrist flexor motoneurones at the onset of voluntary movement in man. Exp Brain Res 74:437–439.

Barbosa TC, Vianna LC, Fernandes IA, Prodel E, Rocha HNM, Garcia VP, Rocha NG, Secher NH, Nobrega ACL (2016) Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men. J Physiol 594:715–725.

Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578:387–396.

Bennett DJ, Hultborn H, Fedirchuk B, Gorassini M (1998) Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. J Neurophysiol 80:2023–2037.

Binder MD (2002) Integration of synaptic and intrinsic dendritic currents in cat spinal motoneurons. Brain Res Rev 40:1–8.

Bloom JS, Hynd GW (2005) The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition? Neuropsychol Rev 15:59–71.

Bongiovanni LG, Hagbarth KE (1990) Tonic vibration reflexes elicited during fatigue from maximal voluntary contractions in man. J Physiol 423:1–14.

Bongiovanni LG, Hagbarth KE, Stjernberg L (1990) Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol 423:15–26.

Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sport Exerc 14:377–381.

Bove M, Nardone A, Schieppati M (2003) Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans. J Physiol 550:617–630.

Brooks J, Allen TJ, Proske U (2013) The senses of force and heaviness at the human elbow joint. Exp Brain Res 226:617–629.

Brouwer B, Sale M V., Nordstrom MA (2001) Asymmetry of motor cortex excitability during a simple motor task: Relationships with handedness and manual performance. Exp Brain Res 138:467– 476.

Burke D, Hagbarth KE, Skuse NF (1978) Recruitment order of human spindle endings in isometric voluntary contractions. J Physiol 285:101–112.

Cafarelli E, Bigland-Ritchie B (1979) Sensation of static force in muscles of different length. Exp Neurol 65:511–525.

Callaert V, Vercauteren K, Peeters R, Tam F, Graham S, Swinnen SP, Sunaert S, Wenderoth N (2011) Hemispheric Asymmetries of Motor Versus Nonmotor Processes During ( Visuo ) Motor Control. Hum Brain Mapp 1329:1311–1329.

Carlin KP, Jones KE, Jiang Z, Jordan LM, Brownstone RM (2000) Dendritic L-type calcium currents in mouse spinal motoneurons: Implications for bistability. Eur J Neurosci 12:1635–1646.

Carson RG, Riek S, Shahbazpour N (2002) Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol 539:913–925.

Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44:773–791.

Christensen MS, Lundbye-Jensen J, Geertsen SS, Petersen TH, Paulson OB, Nielsen JB (2007) Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat Neurosci 10:417–419.

Christou EA, Zelent M, Carlton LG (2003) Force Control Is Greater in the Upper Compared With the Lower Extremity. J Mot Behav 35:322–324.

Cohen J (1992) Statistical Power Analysis. Curr Dir Psychol Sci 1:98–101.

Cooper DF, Grimby G, Jones DA, Edwards RHT (1979) Perception of effort in isometric and dynamic muscular contraction. Eur J Appl Physiol Occup Physiol 41:173–180.

Cope TC, Clark BD (1991) Motor-unit recruitment in the decerebrate cat: Several unit properties are equally good predictors of order. J Neurophysiol 66:1127–1138.

Corcos DM, Gottlieb GL, Latash ML, Almeida GL, Agarwal GC (1992) Electromechanical delay: An experimental artifact. J Electromyogr Kinesiol 2:59–68.

Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R (2002) The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol 543:317–326.

De Havas J, Ghosh A, Gomi H, Haggard P (2015) Sensorimotor organization of a sustained involuntary movement. Front Behav Neurosci 9:185.

de Morree HM, Klein C, Marcora SM (2012) Perception of effort reflects central motor command during movement execution. Psychophysiology 49:1242–1253.

De Noordhout AM, Pepin JL, Gerard P, Delwaide PJ (1992) Facilitation of responses to motor cortex stimulation: Effects of isometric voluntary contraction. Ann Neurol 32:365–370.

De Serres SJ, Fang NZ (2004) The accuracy of perception of a pinch grip force in older adults. Can J Physiol Pharmacol 82:693–701.

Desmedt JE, Godaux E (1978) Ballistic contractions in fast or slow human muscles; discharge patterns of single motor units. J Physiol 285:185–196.

Desmedt JE, Godaux E (1977) Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J Physiol 264:673–693.

Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431.

Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508:625–633.

do Nascimento OF, Nielsen KD, Voigt M (2006) Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions. Exp Brain Res 171:78–90.

do Nascimento OF, Nielsen KD, Voigt M (2005) Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials. Exp Brain Res 160:154–165.

Duclos C, Roll R, Kavounoudias A, Roll JP (2007) Cerebral correlates of the “Kohnstamm phenomenon”: An fMRI study. Neuroimage 34:774–783.

Edin BB, Vallbo AB (1990) Muscle afferent responses to isometric contractions and relaxations in humans. J Neurophysiol 63:1307–1313.

Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648.

Fallon JB, Macefield VG (2007) Vibration sensitivity of human muscle spindles and golgi tendon organs. Muscle and Nerve 36:21–29.

Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546.

Franklin DW, Wolpert DM (2011) Computational mechanisms of sensorimotor control. Neuron 72:425–442.

Gallagher KM, Fadel PJ, Strømstad M, Ide K, Smith SA, Querry RG, Raven PB, Secher NH (2001) Effects of partial neuromuscular blockade on carotid baroreflex function during exercise in humans. J Physiol 533:871–880.

Gandevia SC, Macefield G, Burke D, Mckenzie DK (1990) Voluntary activation of human motor axons in the absence of muscle afferent feedback: The control of the deafferented hand. Brain 113:1563–1581.

Gauthier GM, Nommay D, Vercher JL (1990) Ocular muscle proprioception and visual localization of targets in man. Brain 113:1857–1871.

Gibson ASC, Lambert E V., Rauch LHG, Tucker R, Baden DA, Foster C, Noakes TD (2006) The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sport Med 36:705–722.

Goble DJ, Coxon JP, Van Impe A, Geurts M, Van Hecke W, Sunaert S, Wenderoth N, Swinnen SP (2012) The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Hum Brain Mapp 33:895–908.

Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP (2009) Proprioceptive sensibility in the elderly: Degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev.

Goldberg G (1985) Supplementary motor area structure and function: Review and hypotheses. Behav Brain Sci 8:567–588.

Goodwin GM, Mccloskey DI, Matthews PBC (1972) The contribution of muscle afferents to kinæsthesia shown by vibration induced illusionsof movement and by the effects of paralysing joint afferents. Brain 95:705–748.

Gordon J, Ghez C (1987) Trajectory control in targeted force impulses - II. Pulse height control. Exp Brain Res 67:241–252.

Granit R, Kernell D, Lamarre Y (1966) Algebraical summation in synaptic activation of motoneurones firing within the ‘primary range’ to injected currents. J Physiol 187:379–399.

Gregory JE, Proske U (1979) The responses of Golgi tendon organs to stimulation of different combinations of motor units. J Physiol 295:251–262.

Grosprêtre S, Gimenez P, Martin A (2018) Neuromuscular and electromechanical properties of ultra-power athletes: the traceurs. Eur J Appl Physiol 118:1361–1371.

Guo F, Sun YJ, Zhang RH (2017) Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials: An event-related potential study. Neuroreport 28:115–122.

Hagbarth KE, Kunesch EJ, Nordin M, Schmidt R, Wallin EU (1986) Gamma loop contributing to maximal voluntary contractions in man. J Physiol 380:575–591.

Haggard P, Whitford B (2004) Supplementary motor area provides an efferent signal for sensory suppression. Cogn Brain Res 19:52–58.

Hallett M (2007) Transcranial Magnetic Stimulation: A Primer. Neuron 55:187–199.

Hampson DB, Clair Gibson AS, Lambert MI, Noakes TD (2001) The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sport Med 31:935–952.

Hampton S, Armstrong G, Ayyar M, Li S (2014) Quantification of perceived exertion during isometric force production with the borg scale in healthy individuals and patients with chronic stroke. Top Stroke Rehabil 21:33–39.

Heckman CJ (1994) Computer simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool. J Neurophysiol 71:1727–1739.

Heckman CJ, Binder MD (1993) Computer simulations of the effects of different synaptic input systems on motor unit recruitment. J Neurophysiol 70:1827–1840.

Heckman CJ, Condon SM, Hutton RS, Enoka RM (1984) Can Ib axons be selectively activated by electrical stimuli in human subjects? Exp Neurol 86:576–582.

Heckman CJ, Enoka RM (2012) Motor unit. Compr Physiol 2:2629–2682.

Heckman CJ, Gorassini MA, Bennett DJ (2005) Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle and Nerve 31:135–156.

Heckman CJ, Lee RH, Brownstone RM (2003) Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends Neurosci 26:688–695.

Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J (2009) Motoneuron excitability: The importance of neuromodulatory inputs. Clin Neurophysiol 120:2040–2054.

Hochman S, Garraway SM, Machacek DW, Shay BL (2001) 5-HT receptors and the neuromodulatory control of spinal cord function In: Motor Neurobiology of the Spinal Cord , pp47–88. CRC Press.

Holstege JC, Kuypers HGJM (1987) Brainstem projections to spinal motoneurons: An update. Neuroscience 23:809–821.

Hultborn H, Brownstone RB, Toth TI, Gossard JP (2004) Key mechanisms for setting the input-output gain across the motoneuron pool. Prog Brain Res 143:75–95.

Hyngstrom AS, Johnson MD, Miller JF, Heckman CJ (2007) Intrinsic electrical properties of spinal motoneurons vary with joint angle. Nat Neurosci 10:363–369.

Jackson AW, Dishman RK (2000) Perceived submaximal force production in young adult males and females. Med Sci Sports Exerc 32:448–451.

Jackson AW, Ludtke AW, Martin SB, Koziris LP, Dishman RK (2006) Perceived submaximal force production in young adults. Res Q Exerc Sport 77:50–57.

Jacobs BL, Martín-Cora FJ, Fornal CA (2002) Activity of medullary serotonergic neurons in freely moving animals. Brain Res Rev 40:45–52.

Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: Functional properties and central actions. Physiol Rev 72:623–666.

Johansson RS, Westling G (1987) Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res 66:141–154.

John EB, Liu W, Gregory RW (2009) Biomechanics of muscular effort: Age-related changes. Med Sci Sports Exerc 41:418–425.

Jones LA (2003) Perceptual constancy and the perceived magnitude of muscle forces. Exp Brain Res 151:197–203.

Jones LA, Hunter IW (1983) Effect of fatigue on force sensation. Exp Neurol 81:640–650.

Jones LA, Piateski E (2006) Contribution of tactile feedback from the hand to the perception of force. Exp Brain Res 168:298–302.

Jung P, Baumgärtner U, Magerl W, Treede RD (2008) Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness. Clin Neurophysiol 119:2579–2586.

Kaneko K, Kawai S, Fuchigami Y, Shiraishi G, Ito T (1996) Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation. J Neurol Sci 139:131–136.

Kararizou E, Manta P, Kalfakis N, Vassilopoulos D (2005) Morphometric study of the human muscle spindle. Anal Quant Cytol Histol 27:1–4.

Kern DS, Semmler JG, Enoka RM (2001) Long-term activity in upper- and lower-limb muscles of humans. J Appl Physiol 91:2224–2232.

Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Uǧurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: Hemispheric asymmetry and handedness. Science (80- ) 261:615–617.

Klem GH, Lüders HO, Jasper HH, Elger C (1999) The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3–6.

Konishi Y, Kubo J, Fukudome A (2009) Effects of prolonged tendon vibration stimulation on eccentric and concentric maximal torque and EMGs of the knee extensors. J Sport Sci Med 8:548–552.

Körding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247. Kumar S, Narayan Y, Chouinard K (1997) Effort reproduction accuracy in pinching, gripping, and lifting among industrial males. Int J Ind Ergon 20:109–119.

Kumar S, Simmonds M (1994) The accuracy of magnitude production of submaximal precision and power grips and gross motor efforts. Ergonomics 37:1345–1353.

Kurata K, Wise SP (1988) Premotor cortex of rhesus monkeys: set-related activity during two conditional motor tasks. Exp Brain Res 69:327–343.

Lackner JR, DiZio PA (2000) Aspects of body self-calibration. Trends Cogn Sci 4:279–288.

Lafargue G, Franck N (2009) Effort awareness and sense of volition in schizophrenia. Conscious Cogn.

Lafargue G, Paillard J, Lamarre Y, Sirigu A (2003) Production and perception of grip force without proprioception: Is there a sense of effort in deafferented subjects? Eur J Neurosci 17:2741–2749.

Lafargue G, Sirigu A (2006) The nature of the sense of effort and its neural substrate. Rev Neurol (Paris) 162:703–712.

Lampropoulou S, Nowicky A V., Baldissera F (2012) Evaluation of the Numeric Rating Scale for perception of effort during isometric elbow flexion exercise. Eur J Appl Physiol 112:1167–1175.

Lampropoulou SI, Nowicky A V. (2014) Perception of effort changes following an isometric fatiguing exercise of elbow flexors. Motor Control 18:146–164.

Lee RH, Heckman CJ (2000) Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. J Neurosci 20:6734–6740.

Lee RH, Heckman CJ (1996) Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. J Neurophysiol 76:2107–2110.

Li W, Matin L (1992) Visual Direction Is Corrected by a Hybrid Extraretinal Eye Position Signal. Ann N Y Acad Sci 656:865–867.

Liu JX, Eriksson PO, Thornell LE, Pedrosa-Domellöf F (2005) Fiber content and myosin heavy chain composition of muscle spindles in aged human biceps brachii. J Histochem Cytochem 53:445– 454.

Lodha N, Naik SK, Coombes SA, Cauraugh JH (2010) Force control and degree of motor impairments in chronic stroke. Clin Neurophysiol 121:1952–1961.

Luu BL, Day BL, Cole JD, Fitzpatrick RC (2011) The fusimotor and reafferent origin of the sense of force and weight. J Physiol 589:3135–3147.

Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D (1991) Decline in spindle support to alpha‐motoneurones during sustained voluntary contractions. J Physiol 440:497–512.

Macefield VG, Gandevia SC, Bigland‐Ritchie B, Gorman RB, Burke D (1993) The firing rates of human motoneurones voluntarily activated in the absence of muscle afferent feedback. J Physiol 471:429–443.

Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M (2001) Electrical and mechanical Hmax-to-Mmax ratio in power- and endurance-trained athletes. J Appl Physiol 90:3– 9.

Mai N, Schreiber P, Hermsdörfer J (1991) Changes in perceived finger force produced by muscular contractions under isometric and anisometric conditions. Exp Brain Res 84:453–460.

Makienko I, Tov EY, Inbar GF (2005) On the effects of adaptation to changing loads on movement-related EEG potentials. Biol Cybern 93:171–177.

Marchand-Pauvert V, Simonetta-Moreau M, Pierrot-Deseilligny E (1999) Cortical control of spinal pathways mediating group II excitation to human thigh motoneurones. J Physiol 517:301–313.

Marcora S (2009) Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol 106:2060–2062.

Marini F, Lee C, Wagner J, Makeig S, Gola M (2019) A comparative evaluation of signal quality between a research-grade and a wireless dry-electrode mobile EEG system. J Neural Eng 16:054001.

Masakado Y, Akaboshi K, Nagata M aki, Kimura A, Chino N (1995) Motor unit firing behavior in slow and fast contractions of the first dorsal interosseous muscle of healthy men. Electroencephalogr Clin Neurophysiol Electromyogr 97:290–295.

Mathis J, Gurfinkel VS, Struppler A (1996) Facilitation of motor evoked potentials by postcontraction response (Kohnstamm phenomenon). Electroencephalogr Clin Neurophysiol 101:289–97.

Matthews PBC (1988) Proprioceptors and their contribution to somatosensory mapping: Complex messages require complex processing. Can J Physiol Pharmacol 66:430–438.

Matthews PBC (1982) Where Does Sherrington’s “Muscular Sense” Originate? Muscles, Joints, Corollary Discharges? Annu Rev Neurosci 5:189–218.

McBride JM, Nimphius S, Erickson TM (2005) The acute effects of heavy-load squats and loaded countermovement jumps on sprint performance. J Strength Cond Res 19:893–897.

McCloskey DI, Ebeling P, Goodwin GM (1974) Estimation of weights and tensions and apparent involvement of a “sense of effort.” Exp Neurol 42:220–232.

McPherson JG, Ellis MD, Heckman CJ, Dewald JPA (2008) Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke. J Neurophysiol 100:3236–3243.

Milner TE (1992) A model for the generation of movements requiring endpoint precision. Neuroscience 49:487–496.

Miyamoto T, Kizuka T, Ono S (2020a) Influence of preceding muscle activity on movement-related cortical potential during superimposed ballistic contraction. Neurosci Lett 735:135193.

Miyamoto T, Kizuka T, Ono S (2020b) The Influence of Contraction Types on the Relationship Between the Intended Force and the Actual Force. J Mot Behav 52:687–693.

Miyamoto T, Kizuka T, Ono S (2020c) Influence of preceding muscle activity on perceptually guided force production during superimposed ballistic contraction. Physiol Behav 222:112933.

Monjo F, Forestier N (2018) Muscle spindle thixotropy affects force perception through afferent-induced facilitation of the motor pathways as revealed by the Kohnstamm effect. Exp Brain Res 236:1193–1204.

Monjo F, Shemmell J, Forestier N (2018) The sensory origin of the sense of effort is context-dependent. Exp Brain Res 236:1997–2008.

Mottram CJ, Suresh NL, Heckman CJ, Gorassini MA, Rymer WZ (2009) Origins of abnormal excitability in biceps brachii motoneurons of spastic-paretic stroke survivors. J Neurophysiol 102:2026–2038.

Nelson RJ (1996) Interactions between motor commands and somatic perception in sensorimotor cortex. Curr Opin Neurobiol 6:801–810.

Nielsen JB (2016) Human Spinal Motor Control. Annu Rev Neurosci 39:81–101.

Noble JW, Eng JJ, Boyd LA (2014) Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: An fMRI study. Exp Brain Res 232:2785–2795.

Oda S, Moritani T (1995) Movement-related cortical potentials during handgrip contractions with special reference to force and electromyogram bilateral deficit. Eur J Appl Physiol Occup Physiol 72:1–5.

Oda S, Shibata M, Moritani T (1996) Force-dependent Changes in Movement-related Potentials Cortical Potentials. J Electromyogr Kinesiol 6:247–252.

Oishi K, Yoneda T, Ishida A (1988) An analysis of frequency response of motor units during voluntary isometric contractions at various speeds. Brain Res 458:261–268.

Park JH, Stelmach GE (2007) Force development during target-directed isometric force production in Parkinson’s disease. Neurosci Lett 412:173–178.

Park WH, Leonard CT, Li S (2008) Finger force perception during ipsilateral and contralateral force matching tasks. Exp Brain Res 189:301–310.

Petisco C, Ramirez-Campillo R, Hernández D, Gonzalo-Skok O, Nakamura FY, Sanchez-Sanchez J (2019) Post-activation potentiation: Effects of different conditioning intensities on measures of physical fitness in male young professional soccer players. Front Psychol 10:1–9.

Phillips D, Kosek P, Karduna A (2019) Force perception at the shoulder after a unilateral suprascapular nerve block. Exp Brain Res 237:2581–1591.

Pincivelo DM, Coelho AJ, Campy RM, Salfetnikov Y, Suter E (2003) Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions. J Electromyogr Kinesiol 13:159–167.

Pincivero DM (2011) Older adults underestimate rpe and knee extensor torque as compared with young adults. Med Sci Sports Exerc 43:171–180.

Pincivero DM, Coelho AJ, Campy RM, Salfetnikov Y, Bright A (2001) The effects of voluntary contraction intensity and gender on perceived exertion during isokinetic quadriceps exercise. Eur J Appl Physiol 84:221–226.

Pincivero DM, Coelho AJ, Erikson DH (2000) Perceived exertion during isometric quadriceps contraction. A comparison between men and women. J Sports Med Phys Fitness 40:319–326.

Pincivero D M., Dixon PT, Coelho AJ (2003) Knee extensor torque, work, and EMG during subjectively graded dynamic contractions. Muscle and Nerve 28:54–61.

Pincivero Danny M., Dixon PT, Coelho AJ (2003) Knee extensor torque, work, and EMG during subjectively graded dynamic contractions. Muscle and Nerve 28:54–61.

Plamondon R, Alimi AM (1997) Speed/accuracy trade-offs in target-directed movements. Behav Brain Sci 20:279–349.

Pope ZK, DeFreitas JM (2015) The effects of acute and prolonged muscle vibration on the function of the muscle spindles reflex arc. Somatosens Mot Res 32:254–261.

Poston B, Christou EA, Enoka JA, Enoka RM (2010) Timing variability and not force variability predicts the endpoint accuracy of fast and slow isometric contractions. Exp Brain Res 202:189– 202.

Powers RK, Binder MD (2001) Input-output functions of mammalian motoneurons. Rev Physiol Biochem Pharmacol 143:137–263.

Powers RK, Binder MD (1995) Effective synaptic current and motoneuron firing rate modulation. J Neurophysiol 74:793–801.

Proske U (2005) What is the role of muscle receptors in proprioception? Muscle and Nerve 31:780– 787.

Proske U, Allen T (2019) The neural basis of the senses of effort, force and heaviness. Exp Brain Res 237:589–599.

Proske U, Gandevia SC (2012) The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697.

Proske U, Gregory JE, Morgan DL, Percival P, Weerakkody NS, Canny BJ (2004) Force matching errors following eccentric exercise. Hum Mov Sci 23:365–378.

Roland PE, Ladegaard-Pedersen H (1977) A quantitative analysis of sensations of tension and of kinæsthesia in man: Evidence for a peripherally originating muscular sense and for a sense of effort. Brain 100:671–692.

Romero DH, Lacourse MG, Lawrence KE, Schandler S, Cohen MJ (2000) Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behav Brain Res 117:83–96.

Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 113:101–107.

Rose PK, Cushing S (1999) Non-linear summation of synaptic currents on spinal motoneurons: Lessons from simulations of the behaviour of anatomically realistic models. Prog Brain Res 123:99–107.

Rosenbaum DA, Gregory RW (2002) Development of a method for measuring movement-related effort biomechanical considerations and implications for Fitts’ law. Exp Brain Res 142:365–373.

Sale DG (2002) Postactivation Potentiation : Role in Human Performance. Exerc Sport Sci Rev 30:138–143.

Sanes JN, Shadmehr R (1995) Sense of muscular effort and somesthetic afferent information in humans In: Canadian Journal of Physiology and Pharmacology , pp223–233. Canadian Science Publishing.

Savage G, Allen TJ, Proske U (2015) The senses of active and passive forces at the human ankle joint. Exp Brain Res 233:2167–2180.

Saxton JM, Clarkson PM, James R, Miles M, Westerfer M, Clark S, Donnelly AE (1995) Neuromuscular dysfunction following eccentric exercise. Med Sci Sports Exerc 27:1185–1193.

Scotland S, Adamo DE, Martin BJ (2014) Sense of effort revisited: Relative contributions of sensory feedback and efferent copy. Neurosci Lett 561:208–212.

Seki T, Ohtsuki T (1995) Reproducibility of subjectively graded voluntary isometric muscle strength in unilateral and simultaneous bilateral exertion. Ergonomics 38:1867–1876.

Seki T, Ohtsuki T (1990) Influence of simultaneous bilateral exertion on muscle strength during voluntary submaximal isometric contraction. Ergonomics 33:1131–1142.

Shadmehr R, Smith MA, Krakauer JW (2010) Error Correction, Sensory Prediction, and Adaptation in Motor Control. Annu Rev Neurosci 33:89–108.

Shaffer SW, Harrison AL (2007) Aging of the Somatosensory System: A Translational Perspective. Phys Ther 87:193–207.

Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V (2000) Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res 133:303–311.

Simon AM, Ferris DP (2008) Lower limb force production and bilateral force asymmetries are based on sense of effort. Exp Brain Res 187:129–138.

Škarabot J, Cronin N, Strojnik V, Avela J (2016) Bilateral deficit in maximal force production. Eur J Appl Physiol 116:2057–2084.

Slobounov S, Hallett M, Newell KM (2004) Perceived effort in force production as reflected in motor-related cortical potentials. Clin Neurophysiol 115:2391–2402.

Smania N, Picelli A, Munari D, Geroin C, Ianes P, Waldner A, Gandolfi M (2010) Rehabilitation procedures in the management of spasticity. Eur J Phys Rehabil Med 46:423–438.

Smith SA, Querry RG, Fadel PJ, Gallagher KM, Strømstad M, Ide K, Raven PB, Secher NH (2003) Partial blockade of skeletal muscle somatosensory afferents attenuates baroreflex resetting during exercise in humans. J Physiol 551:1013–1021.

Sörös P, Knecht S, Imai T, Gürtler S, Lütkenhöner B, Ringelstein EB, Henningsen H (1999) Cortical asymmetries of the human somatosensory hand representation in right- and left-handers. Neurosci Lett 271:89–92.

Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489.

Stein RB (1974) Peripheral control of movement. Physiol Rev 54:215–243. Stevens JC, Mack JD (1959) Scales of apparent force. J Exp Psychol 58:405–413. Stevens SS (1960) The phychophysics of sensory function. Am Sci 48:226–253.

Struzik A, Pietraszewski B, Kawczyński A, Winiarski S, Juras G, Rokita A (2017) Manifestations of proprioception during vertical jumps to specific heights. J Strength Cond Res 31:1694–1701.

Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: Regulation and function. Am J Physiol - Cell Physiol 264:33–35.

Takarada Y, Mima T, Abe M, Nakatsuka M, Taira M (2014) Inhibition of the primary motor cortex can alter one’s “sense of effort”: Effects of low-frequency rTMS. Neurosci Res 89:54–60.

Takarada Y, Nozaki D, Taira M (2006) Force overestimation during tourniquet-induced transient occlusion of the brachial artery and possible underlying neural mechanisms. Neurosci Res 54:38– 42.

Teasdale N, Forget R, Bard C, Paillard J, Fleury M, Lamarre Y (1993) The role of proprioceptive information for the production of isometric forces and for handwriting tasks. Acta Psychol (Amst) 82:179–191.

Thompson PD, Day BL, Rothwell JC, Dressler D, Noordhout AM de, Marsden CD (1991) Further observations on the facilitation of muscle responses to cortical stimulation by voluntary contraction. Electroencephalogr Clin Neurophysiol Evoked Potentials 81:397–402.

Thompson S, Gregory JE, Proske U (1990) Errors in force estimation can be explained by tendon organ desensitization. Exp Brain Res 79:365–372.

Tillin NA, Bishop D (2009) Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sport Med 39:147–166.

Timmons MK, Stevens SM, Pincivero DM (2009) The effect of arm abduction angle and contraction intensity on perceived exertion. Eur J Appl Physiol 106:79–86.

Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915.

Trajano GS, Seitz LB, Nosaka K, Blazevich AJ (2014) Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Appl Physiol 117:1486–1492.

Ugawa Y, Terao Y, Hanajima R, Sakai K, Kanazawa I (1995) Facilitatory effect of tonic voluntary contraction on responses to motor cortex stimulation. Electroencephalogr Clin Neurophysiol Electromyogr 97:451–454.

Ushiyama J, Masani K, Kouzaki M, Kanehisa H, Fukunaga T (2005) Difference in aftereffects following prolonged Achilles tendon vibration on muscle activity during maximal voluntary contraction among plantar flexor synergists. J Appl Physiol 98:1427–1433.

Valls-Solé J, Pascual-Leone A, Brasil-Neto JP, Cammarota A, McShane A, Hallett M (1994) Abnormal facilitation of the response to transcranial magnetic stimulation in patients with parkinson’s disease. Neurology 44:735–741.

Van Cutsem M, Duchateau J (2005) Preceding muscle activity influences motor unit discharge and rate of torque development during ballistic contractions in humans. J Physiol 562:635–644.

Van Den Bos MAJ, Geevasinga N, Menon P, Burke D, Kiernan MC, Vucic S (2017) Physiological processes influencing motor-evoked potential duration with voluntary contraction. J Neurophysiol 117:1156–1162.

Vandervoort AA, Sale DG, Moroz J (1984) Comparison of motor unit activation during unilateral and bilateral leg extension. J Appl Physiol Respir Environ Exerc Physiol 56:46–51.

Vanrenterghem J, Lees A, Lenoir M, Aerts P, De Clercq D (2004) Performing the vertical jump: Movement adaptations for submaximal jumping. Hum Mov Sci 22:713–727.

Volkmann J, Schnitzler A, Witte OW, Freund HJ (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154.

von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripheric). Naturwissenschaften 37:464–476.

Voon V, Brezing C, Gallea C, Hallett M (2011) Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder. Mov Disord 26:2396–2403.

Wallman KE, Sacco P (2007) Sense of effort during a fatiguing exercise protocol in chronic fatigue syndrome. Res Sport Med 15:47–59.

Weerakkody N, Percival P, Morgan DL, Gregory JE, Proske U (2003) Matching different levels of isometric torque in elbow flexor muscles after eccentric exercise. Exp Brain Res 149:141–150.

West SJ, Smith L, Lambert E V., Noakes TD, Gibson ASC (2005) Submaximal force production during perceptually guided isometric exercise. Eur J Appl Physiol 95:537–542.

Wiktorin C, Selin K, Ekenvall L, Kilbom Å, Alfredsson L (1996) Evaluation of perceived and self-reported manual forces exerted in occupational materials handling. Appl Ergon 27:231–239. Wise SP, Mauritz KH (1985) Set-related neuronal activity in the premotor cortex of rhesus monkeys: Effects of changes in motor set. Proc R Soc London - Biol Sci 223:331–354.

Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science (80- ) 269:1880–1882.

Wolpert DM, Miall RC (1996) Forward Models for Physiological Motor Control. Neural Networks 9:1265–1279.

Yamaguchi A, Milosevic M, Sasaki A, Nakazawa K (2020) Force Control of Ankle Dorsiflexors in Young Adults: Effects of Bilateral Control and Leg Dominance. J Mot Behav 52:226–235.

Yen JT, Li S (2015) Altered force perception in stroke survivors with spastic hemiplegia. J Rehabil Med 47:917–923.

Yoneda T, Oishi K, Fujikura S, Ishida A (1986) Recruitment threshold force and its changing type of motor units during voluntary contraction at various speeds in man. Brain Res 372:89–94.

Zénon A, Sidibé M, Olivier E (2015) Disrupting the supplementary motor area makes physical effort appear less effortful. J Neurosci 35:8737–8744.

【和⽂】

林容市, ⾼橋信⼆, 速⽔達也 (2019) 就学段階ごとの運動経験が⼤学⽣における把握の調整⼒に及ぼす影響. 体育測定評価研究 18: 35–46.

猪飼道夫 (1973). ⾝体活動の⽣理学. 杏林書院.

伊藤浩志, 村⽊征⼈ (1997) ⾛, 跳, 投動作のグレーディング能⼒に関する研究. スポーツ⽅法学研究 10: 17–24.

今⻄平, 太⽥洋⼀ (2016) 垂直跳と下肢等尺性筋⼒発揮のグレーディング能⼒の関連性. トレーニング科学 27: 133–139.

⾦⼦元彦, 村⽊征⼈, 伊藤浩志, 成万祥 (1999) 打動作における主観的努⼒度と客観的達成度の対応関係. スポーツ⽅法学研究 12: 25–32.

松浦義⾏ (1998) 調整⼒について. 体⼒科学: 27, 137–146.

宮本健史, ⽊塚朝博, 林容市, ⼩野誠司 (2019) 単純反応課題との複合が垂直跳び⾼のグレーディングに及ぼす影響. 体育学研究 64: 49–57.

宮本健史, 林容市, ⾼橋信⼆, 速⽔達也 (2017) ⻘年期における垂直跳びの跳躍⾼調節能⼒と各就学年代の運動量との関係−開眼および閉眼条件を⽤いた検討−. 体育測定評価学研究 17: 37–46.

森本吉謙, 伊藤浩志, 川村卓, 奈良隆章 (2014) 投球運動における⾼強度領域での主観的努⼒度の変化がボールスピードに及ぼす影響とその再現性. コーチング学研究 27: 195–202.

⻤澤範⼦, 北村哲, 本道慎吾, 伊佐野⿓司, 城間修平, ⻘⼭清英 (2011) テニスのグラウンドストロークにおける主観的努⼒度と客観的達成度の対応関係に関する研究. コーチング学研究 25: 91–98.

⼤築⽴志 (1988) 「たくみ」の科学. 朝倉書店.

⼤築⽴志, 鈴⽊三央, 柳原⼤ (2017) 筋⼒発揮の脳・神経科学−その基礎から応⽤まで−. 市村出版.

定本朋⼦, ⼤築⽴志 (1977) 跳躍動作における出⼒制御の正確性−跳躍距離のgradingおよび再現の特性−. 体育学研究 22: 215–229.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る