リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Relationship between media multitasking and functional connectivity in the dorsal attention network」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Relationship between media multitasking and functional connectivity in the dorsal attention network

Kobayashi, Kei 京都大学 DOI:10.14989/doctor.k22885

2021.01.25

概要

With the development of digital technology, media multitasking behaviour, which is using two or more media simultaneously, has become more commonplace. There are two opposing hypotheses of media multitasking with regard to its impact on attention. One hypothesis claims that media multitasking can strengthen attention control, and the other claims heavy media multitaskers are less able to focus on relevant tasks in the presence of distractors. A total of 103 healthy subjects took part in this study. We measured the Media Multitasking Index (MMI) and subjects performed the continuous performance test. Resting state and oddball task functional MRI were conducted to analyse functional connectivity in the dorsal attention network, and the degree centrality (DC) was calculated using graph theory analysis. We found that the DCs in the dorsal attention network were higher during resting state than during the oddball task. Furthermore, the DCs during the task were positively correlated with the MMI. These results indicated that the DC reduction from resting state to the oddball task in high media multitaskers was attenuated compared with low media multitaskers. This study not only reveals more about the neurophysiology of media multitasking, but could also indicate brain biomarkers of media multitasking behaviour.

参考文献

1. Hwang, Y., Kim, H. & Jeong, S.-H. Why do media users multitask?: Motives for general, medium-specifc, and content-specifc types of multitasking. Comput. Hum. Behav. 36, 542–548. https://doi.org/10.1016/j.chb.2014.04.040 (2014).

2. van der Schuur, W. A., Baumgartner, S. E., Sumter, S. R. & Valkenburg, P. M. Te consequences of media multitasking for youth: A review. Comput. Hum. Behav. 53, 204–215, https://doi.org/10.1016/j.chb.2015.06.035 (2015).

3. Ophir, E., Nass, C. & Wagner, A. D. Cognitive control in media multitaskers. PNAS 106, 15583–15587 (2009).

4. Alzahabi, R. & Becker, M. W. Te association between media multitasking, task-switching, and dual-task performance. J. Exp. Psychol. Hum. Percept. Perform. 39, 1485–1495. https://doi.org/10.1037/a0031208 (2013).

5. Loh, K. K. & Kanai, R. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex. PLoS ONE 9, e106698. https://doi.org/10.1371/journal.pone.0106698 (2014).

6. Baumgartner, S. E., van der Schuur, W. A., Lemmens, J. S. & te Poel, F. Te relationship between media multitasking and attention problems in adolescents: Results of two longitudinal studies. Hum. Commun. Res. https://doi.org/10.1111/hcre.12111 (2017).

7. Sanbonmatsu, D. M., Strayer, D. L., Medeiros-Ward, N. & Watson, J. M. Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking. PLoS ONE 8, e54402. https://doi.org/10.1371/journal.pone.0054402 (2013).

8. Yap, J. Y. & Lim, S. W. H: Media multitasking predicts unitary versus splitting visual focal attention. J. Cognit. Psychol. 25(7), 889–902, https://doi.org/10.1080/20445911.2013.835315 (2013)

9. Ralph, B. C. W., Tomson, D. R., Seli, P., Carriere, J. S. A., Smilek, D. Media multitasking and behavioral measures of sustained attention. Attent. Percept. Psychophys. 77, 390–401, https://doi.org/10.3758/s13414-014-0771-7 (2015)

10. Minear, M., Brasher, F., McCurdy, M., Lewis, J., Younggren, A. Working memory, fuid intelligence, and impulsiveness in heavy media multitaskers. Psychon. Bull. Rev. 20, 1274–1281, https://doi.org/10.3758/s13423-013-0456-6 (2013)

11. Baumgartner, S. E., Weeda, W. D., van der Heijden, L. L. & Huizinga, M. Te relationship between media multitasking and executive function in early adolescents. J. Early Adolesc. 34, 1120–1144. https://doi.org/10.1177/0272431614523133 (2014).

12. Wiradhany, W. & Nieuwenstein, M. R. Cognitive control in media multitaskers: Two replication studies and a meta-analysis. Attent. Percept. Psychophys. 79, 2620–2641. https://doi.org/10.3758/s13414-017-1408-4 (2017).

13. Cardoso-Leite, P., Kludt, R., Vignola, G., Wei Ji Ma, C., Green, S., & Bavelier, D. Technology consumption and cognitive control: Contrasting action video game experience with media multitasking. Attent. Percept. Psychophys. 78, 218–241, https://doi. org/10.3758/s13414-015-0988-0 (2016).

14. Moisala, M. et al. Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults. Neuroimage 134, 113–121. https://doi.org/10.1016/j.neuroimage.2016.04.011 (2016).

15. Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 15, 483–506. https://doi.org/10.1016/j.tics.2011.08.003 (2011).

16. Kim, H. Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum. Brain Mapp. 35, 2265–2284. https://doi.org/10.1002/hbm.22326 (2014).

17. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. https://doi.org/10.1038/nrn755 (2002).

18. Corbetta, M., Patel, G. & Shulman, G. Te reorienting system of the human brain: From environment to theory of mind. Neuron 58, 306–324. https://doi.org/10.1016/j.neuron.2008.04.017 (2008).

19. Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorf, M. G. Te neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978. https://doi.org/10.1038/nn1727 (2006).

20. Cole, M. W. et al. Multi-task connectivity reveals fexible hubs for adaptive task control. Nat. Neurosci. 16(9), 1348–1355. https:// doi.org/10.1038/nn.3470 (2013).

21. Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., Raichle, E.M. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. PNAS 103(26), 10046–10051, https://doi.org/10.1073/pnas.0604187103 (2006).

22. Schultz. D. H, Cole. M. Higher intelligence is associated with less task-related brain network reconfguration. J. Neurosci. 17, 36(33), 8551–61, https://doi.org/10.1523/JNEUROSCI.0358-16 (2016).

23. Tomasi, D., Wang, R., Wang, G. J. & Volkow, N. D. Functional connectivity and brain activation: A synergistic approach. Cereb. Cortex 24, 2619–2629. https://doi.org/10.1093/cercor/bht119 (2014).

24. Le, T. H., Pardo, J. V. & Hu, X. 4 T-fMRI study of nonspatial shifing of selective attention: Cerebellar and parietal contributions. J. Neurophysiol. 79, 1535–1548 (1998).

25. Utevsky, A. V., Smith, D. V. & Huettel, S. A. Precuneus is a functional core of the default-mode network. J. Neurosci. 34, 932–940. https://doi.org/10.1523/JNEUROSCI.4227-13.2014 (2014).

26. Posner, M., Walker, J., Friedrich, F. & Rafal, R. Efects of parietal injury on covert orienting of attention. J. Neurosci. 4, 1863–1874 (1984).

27. Behrmann, M., Geng, J. J. & Shomstein, S. Parietal cortex and attention. Curr. Opin. Neurobiol. 14, 212–217. https://doi. org/10.1016/j.conb.2004.03.012 (2004).

28. Cole, M. W., Ito, T., Schultz, D., Mill, R., Chen, R., Cocuzza, C. Task activations produce spurious but systematic infation of task functional connectivity estimates. Neuroimage 189, 1–18, https://doi.org/10.1016/j.neuroimage.2018.12.054. (2019)

29. Matsuoka, K., Uno, M., Kasai, K., Koyama, K. & Kim, Y. Estimation of premorbid IQ in individuals with Alzheimer’s disease using Japanese ideographic script (Kanji) compound words: Japanese version of national adult reading test. Psychiatry Clin. Neurosci. 60, 332–339. https://doi.org/10.1111/j.1440-1819.2006.01510.x (2006).

30. Wohlberg, G. & Kornetsky, C. Sustained attention in remitted schizophrenics. Arch. Gen. Psychiatry 28, 533–537. https://doi. org/10.1001/archpsyc.1973.01750340065011 (1973).

31. Grifanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247. https://doi.org/10.1016/j.neuroimage.2014.03.034 (2014).

32. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042 (2007).

33. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018 (2012).

34. Fujiwara, H., Yoshimura, S., Kobayashi, K., Ueno, T., Oishi, N., Murai, T. Neural correlates of non-clinical internet use in the motivation network and its modulation by subclinical autistic traits. Front. Hum. Neurosci. 10(12), 493, https://doi.org/10.3389/ fnhum.2018.00493. (2018)

35. Yeo, B. T. et al. Te organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. https://doi.org/10.1152/jn.00338.2011 (2011).

36. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 (2010).

37. Markett, S., Reuter, M., Montag, C., Voigt, G., Lachmann, B., Rudorf, S., Elger, C. E., Weber, B, Assessing the function of the frontoparietal attention network: Insights from resting-state fMRI and the attentional network test. Hum. Brain Mapp. 35(4), 1700–1709, https://doi.org/10.1002/hbm.22285 (epub 2013 May 14) (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る