リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Short-lived and Nonphosphorescent Triplet state of Mexoryl SX, a UV-A Sunscreen」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Short-lived and Nonphosphorescent Triplet state of Mexoryl SX, a UV-A Sunscreen

Shamoto Yuta Shimizu Ryohei Yagi Mikio 00107369 Oguchi-Fujiyama Nozomi Kang Jasmin Kikuchi Azusa 30452048 横浜国立大学

2020.04.15

概要

Mexoryl SX (terephthalylidene-3,3′-dicamphor-10,10′-disulfonic acid, Ecamsule) is a water-soluble UV-A absorber. The near-IR phosphorescence spectrum of singlet oxygen generated by photosensitization with Mexoryl SX was not observed in air-saturated water. On the other hand, the time-resolved near-IR phosphorescence spectrum was observed in oxygen-saturated phosphate buffer (pH 7.4). The quantum yield of the singlet oxygen generation (ΦΔ) was determined to be 0.0021 ± 0.0005. The ability of Mexoryl SX as a photosensitizer is quite low. The question arises as to the quite low ΦΔ value. No phosphorescence was detectable from Mexoryl SX in ethanol at 77 K. We elucidated the nature of the lowest excited triplet (T1) state of Mexoryl SX using a time-resolved EPR technique, because this technique is powerful for the study of short-lived and nonphosphorescent T1 molecules. The strong time-resolved EPR signals were observed. This fact shows that a considerable proportion of the lowest excited singlet (S1) state molecules undergoes intersystem crossing (ISC) to the T1 state and the deactivation process of the T1 state is mainly radiationless. The observed zero-filed splitting parameters, T1 lifetime, and S1 → T1 ISC anisotropy suggest that the T1 state can be regarded as a 3nπ*–3ππ* mixing state in character and the two unpaired electrons in the T1 state do not localize on (4-methylbenzylidene)camphor, a closely related component. Although the shorter T1 lifetime (47 ns) prevents T1 state quenching by ground-state oxygen, the 3nπ* character may contribute something to the low ΦΔ value.

この論文で使われている画像

参考文献

1. W. Bäumler, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. By S. Nonell,

C. Flors, Vol. 2 (The Royal Society of Chemistry, Cambridge, UK, 2016), p. 205.

2. N. A. Shaath, in Sunscreens: Regulations and Commercial Development, ed. By N. A. Shaath

(Taylor & Francis, Boca Raton, USA, 2005), p. 3.

3. B. P. Hibler, S. W. Dusza, S. Q. Wang, in Principles and Practice of Photoprotection, ed. By S. Q.

Wang, H. W. Lim (Springer, Cham, Switzerland, 2016), p. 23.

4. S. A. Miller, S. L. Hamilton, U. G. Wester, W. Howard Cyr, Photochem. Photobiol. 68, 63 (1998).

5. M. Shaban, F. Almutawa, in Principles and Practice of Photoprotection, ed. By S. Q. Wang, H. W.

Lim (Springer, Cham, Switzerland, 2016), p. 429.

6. A. Fourtanier, D. Moyal, S. Seite, Photochem. Photobiol. Sci. 11, 81 (2012).

7. C. Cole, in Principles and Practice of Photoprotection, ed. By S. Q. Wang, H. W. Lim (Springer,

Cham, Switzerland, 2016), p. 275.

8. A. Deflandre, G. Lang, Int. J. Cosmet. Sci. 10, 53 (1988).

9. A. Fourtanier, J. Labat-Robert, P. Kern, C. Berrebi, A. M. Gracia, B. Boyer, Photochem. Photobiol.

55, 549 (1992).

10. S. Daly, H. Ouyang, P. Maitra, in Principles and Practice of Photoprotection, ed. By S. Q. Wang,

H. W. Lim (Springer, Cham, Switzerland, 2016), p. 159.

11. A. Cantrell, D. J. McGarvey, L. Mulroy, T. G. Truscott, Photochem. Photobiol. 70, 292 (1999).

12. T. Tsuchiya, A. Kikuchi, N. Oguchi-Fujiyama, K. Miyazawa, M. Yagi, Photochem. Photobiol. Sci.

14, 807 (2015).

13. A. Kikuchi, K. Shibata, R. Kumasaka, M. Yagi, J. Phys. Chem. A 117, 1413 (2013).

14. A. Kikuchi, K. Shibata, R. Kumasaka, M. Yagi, Photochem. Photobiol. Sci. 12, 246 (2013).

15. M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, Handbook of Photochemistry, 3rd edn. (Taylor &

Francis, Boca Raton, USA 2006).

16. R. Schmidt, J. Phys. Chem. 100, 8049 (1996).

17. S. Nonell, C. Flors, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. By S.

Nonell, C. Flors, Vol. 2 (The Royal Society of Chemistry, Cambridge, UK, 2016), p. 7.

18. А. A. Krasnovsky Jr., J. Photochem. Photobiol. A 196, 210 (2008).

14

19. J. Baier, T. Fuß, C. Pöllmann, C. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M.

Landthaler, W. Bäumler, J. Photochem. Photobiol. B 87, 163 (2007).

20. R. Shimizu, M. Yagi, A. Kikuchi, J. Photochem. Photobiol. B 191, 116 (2019).

21. S. Fukuchi, M. Yagi, N. Oguchi-Fujiyama, J. Kang, A. Kikuchi, Photochem. Photobiol. Sci. 18,

1556 (2019).

22. D. G. Fresnadillo, S. Lacombe, in Singlet Oxygen: Applications in Biosciences and Nanosciences,

ed. By S. Nonell, C. Flors, Vol. 1 (The Royal Society of Chemistry, Cambridge, UK, 2016) p. 105.

23. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, J. Photochem. Photobiol. A 79, 11 (1994).

24. N. Hirota, S. Yamauchi, J. Photochem. Photobiol. C 4, 109 (2003).

25. P. Kottis, R. Lefebvre, J. Chem. Phys. 39, 393 (1963).

26. J. Tanaka, Bull. Chem. Soc. Jpn. 36, 833 (1963).

27. M. Kinoshita, N. Iwasaki, N. Nishi, Appl. Spectrosc. Rev. 17, 1 (1981).

28. P. Kottis, R. Lefebvre, J. Chem. Phys. 41, 379 (1964).

29. M. S. De Groot, J. H. van der Waals, Physica 29, 1128 (1963).

30. R. Furrer, F. Fujara, C. Lange, D. Stehlik, H. M. Vieth, W. Vollmann, Chem. Phys. Lett. 75, 332

(1980).

31. A. Carrington, A. D. McLachlan, Introduction to Magnetic Resonance (Harper & Row, London,

UK 1967).

32. N. Hirota, S. Yamauchi, M. Terazima, Rev. Chem. Intermed. 8, 189 (1987).

33. D. A. Antheunis, B. J. Botter, J. Scmidt, J. H. van der Waals, Mol. Phys. 29, 49 (1975).

34. E. T. Harrigan, N. Hirota, Mol. Phys. 31, 663 (1976).

35. F. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data 22, 113 (1993).

36. N. J. Turro, V. Ramamurthy, J. C. Scaiano, Modern Molecular Photochemistry of Organic

Molecules (University Science Books, Sausalito, USA 2010).

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る