リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「DNA-PKcsは低栄養状態で活性化しAkt、MST1、FoxO3a、NDR1を制御する」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

DNA-PKcsは低栄養状態で活性化しAkt、MST1、FoxO3a、NDR1を制御する

志賀 壮一郎 東北大学

2020.03.25

概要

緒言: 低酸素及び低栄養状態のがん細胞は放射線治療に抵抗性を示し、がんの再発に寄与すると考えられているが、低酸素及び低栄養状態のがん細胞における放射線抵抗性獲得の分子機序は不明である。これまでに低酸素及び低栄養状態で DNA 二重鎖損傷修復酵素である ATM の発現量の亢進が放射線抵抗性の一因であることが示唆されている。本研究では、ATM と同じPI3K ファミリーに属するDNA-PKcs への低栄養状態の影響を評価し、さらにMST1、転写因子FoxO3a への影響を評価した。

材料と方法: ヒト神経膠芽腫細胞株T98G を、血清を添加しないグルコース濃度0g/L、1g/L、4.5g/L でそれぞれ2 時間培養し、蛋白質を回収してウエスタンブロット法によりDNA-PKcs の発現量及びリン酸化 の比較を行った。次に、グルコース濃度0g/L または1g/L の培地でT98G を培養し、DNA-PKcs 阻害剤 NU7026 またはAkt 阻害剤Akt inhibitor Ⅷによる処理を行い、蛋白質を回収し、Akt、MST1、FoxO3aの発現及びリン酸化をそれぞれ評価した。さらに、siRNA によりDNA-PKcs またはAkt の発現を抑制し、同様に各蛋白質の発現を評価した。低栄養状態におけるMST1 の機能を評価するため、siRNA による DNA-PKcs またはAkt をノックダウンした場合のNDR1 のリン酸化を評価した。またFoxO3a のリン酸化へのAMPK の関与を調べるため、DNA-PKcs の阻害によるAMPKα のリン酸化への影響を評価した。

結果: グルコース濃度1g/L または4.5g/L での培養と比較し、低栄養状態 (グルコース濃度0g/L)での培養によって DNA-PKcs のリン酸化の亢進が見られた。低栄養状態で DNA-PKcs、Akt、MST1、FoxO3aのリン酸化が見られた。NU7026 の処理またはsiRNA によるDNA-PKcs の発現抑制により、低栄養状態におけるAkt、MST1、FoxO3a のリン酸化は抑制された。また、Akt inhibitor Ⅷの処理またはsiRNAによるAkt の発現抑制により、低栄養状態におけるMST1、FoxO3a のリン酸化は抑制された。低栄養状態でみられたNDR1 のリン酸化はDNA-PKcs またはAkt の発現抑制により抑制された。低栄養状態でみられたAMPKα のリン酸化はNU7026 によるDNA-PKcs の阻害では抑制されなかった。

考察: DNA-PKcs/Akt の高発現及び活性化は放射線抵抗性に関与することが知られていることから、低栄養状態のがん細胞ではDNA-PKcs/Akt の活性化により放射線抵抗性を獲得している可能性が考えられた。低栄養状態で活性化した DNA-PKcs/Akt は、MST1、FoxO3a を活性化することが示唆された。DNA-PKcs/Akt により活性化されたMST1 は下流のNDR1 をリン酸化することが示唆された。また低栄養状態におけるDNA-PKcs の阻害ではAMPKα のリン酸化は抑制されず、FoxO3a のSer413 のリン酸化がAMPK 非依存性であることが示唆された。

結論: 本研究によりDNA-PKcs は低栄養状態で活性化し、Akt、MST1、FoxO3a、NDR1 を制御することが示唆された。低栄養状態のがん細胞における DNA-PKcs の活性化が放射線抵抗性獲得において重要な機能を持つことが示唆されることから、本研究の成果は低栄養状態のがん細胞における放射線抵抗性獲得の分子機序解明の一助となると考えられる。

この論文で使われている画像

参考文献

[1] Vaupel P, Mayer A. Hypoxia in cancer: significant and impact on clinical outcome Cancer Metastasis Rev. 2007 Jun;26(2):225-39.

[2] Dhani N, Fyles A, Hedley D, Milosevic M. The clinical significance of hypoxia in human cancers. Semin Nucl Med. 2015 Mar;45(2):110-21.

[3] Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Int J Mol Sci. 2019 Jan 9;20(2). pii:E238.

[4] Harada H. Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res. 2016 Aug;57 Suppl 1:99-105.

[5] Murata Y, Hashimoto T, Urushihara Y, Shiga S, Takeda K, Jingu K, Hosoi Y. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217 Biochem Biophys Res Commun. 2018 Jan 22;495(4):2566-72.

[6] Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016 Nov 25;11(1):159.

[7] Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000 Apr;10(2):144-50.

[8] Haffty BG and Wilson LD. Handbook of Radiation Oncology: Basic Principles and Clinical Protocols. Jones & Bartlett Learning; 1st edition, July 23, 2008

[9] Santivasi WL, Xia F. Ionizing Radiation-Induced DNA Damage, Response, and Repair. Antioxid Redox Signal. 2014 Jul 10;21(2):251-9.

[10] Hill R and Lee PWK. The DNA-dependent protein kinase (DNA-PK): more than just a case of making ends meet? Cell Cycle. 2010 Sep 1;9(17):3460-9.

[11] Chen BP, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, Yajima H, Löbrich M, Shiloh Y, Chen DJ. Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J Biol Chem. 2007 Mar 2;282(9):6582-7.

[12] Lee JH1, Kim KH, Morio T, Kim H. Ataxia-telangiectasia-mutated-dependent activation of Ku in human fibroblasts exposed to hydrogen peroxide. Ann N Y Acad Sci. 2006 Dec;1091:76-82.

[13] Moynahan ME and Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010 Mar;11(3):196-207.

[14] Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J. 2000 Feb 1;19(3):463-71.

[15] Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003 Sep;4(9):712-20.

[16] Liu J, Majumdar A, Liu J, Thompson LH, Seidman MM. Sequence conversion by single strand oligonucleotide donors via non-homologous end joining in mammalian cells. J Biol Chem. 2010 Jul 23;285(30):23198-207.

[17] Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Löbrich M. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J. 2009 Nov 4;28(21):3413-27.

[18] DiBiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ Jr, Iliakis G. DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res. 2000 Mar 1;60(5):1245-53.

[19] Frosina G. DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res. 2009 Jul;7(7):989-99.

[20] Hosoi Y, Miyachi H, Matsumoto Y, Ikehata H, Komura J, Ishii K, Zhao HJ, Yoshida M, Takai Y, Yamada S, Suzuki N, Ono T. A phosphatidylinositol 3-kinase inhibitor wortmannin induces radioresistant DNA synthesis and sensitizes cells to bleomycin and ionizing radiation. Int J Cancer. 1998 Nov 23;78(5):642-7.

[21] Yang L, Liu Y, Sun C, Yang X, Yang Z, Ran J, Zhang Q, Zhang H,Wang X. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation. Oncol Lett. 2015 Nov;10(5):2856-64.

[22] Marampon F, Gravina GL, Zani BM, Popov VM, Fratticci A, Cerasani M, Di Genova D, Mancini M, Ciccarelli C, Ficorella C, Di Cesare E, Festuccia C. Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1α functional interplay. Int J Oncol. 2014 Jun;44(6):2121-31.

[23] Daido S, Yamamoto A, Fujiwara K, Sawaya R, Kondo S, Kondo Y. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res. 2005 May 15;65(10):4368-75.

[24] van der Burg M, Ijspeert H, Verkaik NS, Turul T, Wiegant WW, Morotomi-Yano K, Mari PO, Tezcan I, Chen DJ, Zdzienicka MZ, van Dongen JJ, van Gent DC. A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest. 2009 Jan;119(1):91-8.

[25] Hashimoto T, Murata Y, Urushihara Y, Shiga S, Takeda K, Hosoi Y. Severe hypoxia increases expression of ATM and DNA-PKcs and it increases their activities through Src and AMPK signaling pathways. Biochem Biophys Res Commun. 2018 Oct 20;505(1):13-9.

[26] Tissenbaum HA. DAF-16: FOXO in the Context of C. elegans. Curr Top Dev Biol. 2018;127:1-21.

[27] Lin XX, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR, Ruvkun G, Riedel CG. DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun. 2018 Oct 23;9(1):4400.

[28] Hibshman JD, Doan AE, Moore BT, Kaplan RE, Hung A, Webster AK, Bhatt DP, Chitrakar R, Hirschey MD, Baugh LR. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. Elife. 2017 Oct 24;6. pii: e30057.

[29] Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 120 (2007) 2479-87.

[30] Brown AK, Webb AE Regulation of FOXO Factors in Mammalian Cells. Curr Top Dev Biol. 127 (2018)165-92.

[31] Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002 Sep 19;419(6904):316-21.

[32] Holley AK1, Xu Y, St Clair DK, St Clair WH. RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Ann N Y Acad Sci. 2010 Jul;1201:129-36.

[33] Jones JB, Cramer HM, Inch WR, Lampe HB. Radioprotective effect of free radical scavenging enzymes. J Otolaryngol. 1990 Oct;19(5):299-306.

[34] Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villén J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved mst-foxo signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006 Jun 2;125(5):987-1001.

[35] Yuan Z, Lehtinen MK, Merlo P, Villén J, Gygi S, Bonni A. Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem. 2009 Apr 24;284(17):11285-92.

[36] Jang SW, Yang SJ, Srinivasan S, Ye K. Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J Biol Chem. 2007 Oct 19;282(42):30836-44

[37] Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 2007 Oct 12;282(41):30107-19.

[38] Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008 Apr 25;30(2):203-13.

[39] Toulany M, Lee KJ, Fattah KR, Lin YF, Fehrenbacher B, Schaller M, Chen BP, Chen DJ, Rodemann HP. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res. 2012 Jul;10(7):945-57.

[40] Park J, Feng J, Li Y, Hammarsten O, Brazil DP, Hemmings BA. DNA-dependent protein kinase-mediated phosphorylation of protein kinase B requires a specific recognition sequence in the C-terminal hydrophobic motif. J Biol Chem. 2009 Mar 6;284(10):6169-74.

[41] Vichalkovski A, Gresko E, Cornils H, Hergovich A, Schmitz D, Hemmings BA. NDR kinase is activated by RASSF1A/MST1 in response to Fas receptor stimulation and promotes apoptosis. Curr Biol. 2008 Dec 9;18(23):1889-95.

[42] Jiang W, Crowe JL, Liu X1, Nakajima S, Wang Y, Li C, Lee BJ, Dubois RL, Liu C, Yu X, Lan L, Zha S. Differential phosphorylation of DNA-PKcs regulates the interplay between end -processing and end-ligation during nonhomologous end-joining. Mol Cell. 2015 Apr 2;58(1):172-85.

[43] Zhuang W, Li B, Long L, Chen L, Huang Q, Liang ZQ. Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res. 2011 Jan 31;1371:7-15.

[44] Li R, Luo X, Zhu Y, Zhao L, Li L, Peng Q, Ma M, Gao Y. ATM signals to AMPK to promote autophagy and positively regulate DNA damage in response to cadmium-induced ROS in mouse spermatocytes. Environ Pollut. 2017 Dec;231(Pt 2):1560-8.

[45] Zannella VE, Cojocari D, Hilgendorf S, Vellanki RN, Chung S, Wouters BG, Koritzinsky M. AMPK regulates metabolism and survival in response to ionizing radiation. Radiother Oncol. 2011 Jun;99(3):293-9.

[46] Lu J, Tang M, Li H, Xu Z, Weng X, Li J, Yu X, Zhao L, Liu H, Hu Y, Tan Z, Yang L, Zhong M, Zhou J, Fan J, Bode AM, Yi W, Gao J, Sun L, Cao Y. EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma. Cancer Lett. 2016 Sep 28;380(1):191-200.

[47] Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem. 2016 Feb 15;109:314-41.

[48] Feng J, Park J, Cron P, Hess D, Hemmings BA. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem. 2004 Sep 24;279(39):41189-96.

[49] Bozulic L, Surucu B, Hynx D, Hemmings BA., PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008 Apr 25;30(2):203-13.

[50] Toulany M, Lee KJ, Fattah KR, Lin YF, Fehrenbacher B, Schaller M, Chen BP, Chen DJ, Rodemann HP. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res. 2012 Jul;10(7):945-57.

[51] Webb AE, Brunet A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci. 2014 Apr;39(4):159-69.

[52] Hong YA, Lim JH, Kim MY, Kim Y, Park HS, Kim HW, Choi BS, Chang YS, Kim HW, Kim TY, Park CW. Extracellular Superoxide Dismutase Attenuates Renal Oxidative Stress Through the Activation of Adenosine Monophosphate-Activated Protein Kinase in Diabetic Nephropathy. Antioxid Redox Signal. 2018 Jun 10;28(17):1543-61.

[53] Katheder NS, Khezri R, O'Farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G, Bilder D, Brech A, Stenmark H, Rusten TE. Microenvironmental autophagy promotes tumour growth. Nature. 2017 Jan 19;541(7637):417-20.

[54] Yuan Z, Kim D, Shu S, Wu J, Guo J, Xiao L, Kaneko S, Coppola D, Cheng JQ. Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem. 2016 Oct 21;291(43):22858.

[55] Sanphui P1, Biswas SC. FoxO3a is activated and executes neuron death via Bim in response to β-amyloid. Cell Death Dis. 2013 May 9;4:e625.

[56] Chiacchiera F, Simone C. The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle. 2010 Mar 15;9(6):1091-6.

[57] Amatya PN, Kim HB, Park SJ, Youn CK, Hyun JW, Chang IY, Lee JH, You HJ. A role of DNA-dependent protein kinase for the activation of AMP-activated protein kinase in response to glucose deprivation. Biochim Biophys Acta. 2012 Dec;1823(12):2099-108.

[58] Zhou Y, Adolfs Y, Pijnappel WW, Fuller SJ, Van der Schors RC, Li KW, Sugden PH, Smit AB, Hergovich A, Pasterkamp RJ. MICAL-1 is a negative regulator of MST-NDR kinase signaling and apoptosis. Mol Cell Biol. 2011 Sep;31(17):3603-15.

[59] Shimono A, Okuda T, Kondoh H. N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech Dev. 1999 May;83(1-2):39-52.

[60] Warburg O. On the origin of cancer cells. Science. 1956 Feb 24;123(3191):309-14.

[61] Smith DJ, Cossins LR, Hatzinisiriou I, Haber M, Nagley P. Lack of correlation between MYCN expression and the Warburg effect in neuroblastoma cell lines. BMC Cancer. 2008 Sep 14;8:259.

[62] Choi J, Oh S, Lee D, Oh HJ, Park JY, Lee SB, Lim DS. Mst1-FoxO signaling protects Naïve T lymphocytes from cellular oxidative stress in mice. PLoS One. 2009 Nov 24;4(11):e8011.

[63] Park JM, Choi JY, Yi JM, Chung JW, Leem SH, Koh SS, Kang TH. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair. Biochem Biophys Res Commun. 2015 Jun 5;461(3):543-8.

[64] Enomoto A, Fukasawa T, Takamatsu N, Ito M, Morita A, Hosoi Y, Miyagawa K. The HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin modulates radiosensitivity by downregulating serine/threonine kinase 38 via Sp1 inhibition. Eur J Cancer. 2013 Nov;49(16):3547-58.

[65] Fukasawa T, Enomoto A, Miyagawa K. Serine-Threonine Kinase 38 regulates CDC25A stability and the DNA damage-induced G2/M checkpoint. Cell Signal. 2015 Aug;27(8):1569-75.

[66] Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth. Cell Rep. 2015 Feb 17;10(6):891-9

[67] Board M, Humm S, Newsholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J. 1990 Jan 15;265(2):503-9.

[68] Matschke J, Riffkin H, Klein D, Handrick R, Lüdemann L, Metzen E, Shlomi T, Stuschke M, Jendrossek V. Targeted Inhibition of Glutamine-Dependent Glutathione Metabolism Overcomes Death Resistance Induced by Chronic Cycling Hypoxia. Antioxid Redox Signal. 2016 Jul 10;25(2):89-107.

[69] Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 2003 Dec;94(12):1021-8.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る